Synthesis of sphingosine relatives. Part 19. ${ }^{1}$ Synthesis of penaresidin A and B, azetidine alkaloids with actomyosin AT Pase-activating properties

H irosato Takikawa, ${ }^{\text {a }}$ Takeshi M aeda, ${ }^{\text {a }}$ M asanori Seki, ${ }^{\text {a }}$ H iroyuki Koshino ${ }^{\text {b }}$ and Kenji M ori ${ }^{\text {*,a }}$
${ }^{\text {a }}$ D epartment of Chemistry, Science U niversity of Tokyo, K agurazaka 1-3, Shinjuku-ku, Tokyo 162, J apan
${ }^{\mathrm{b}}$ The Institute of P hysical and Chemical Research (RIKEN) , H irosawa 2-1, W ako-shi, Saitama 351-01, J apan

Abstract

Three stereoisomers of penaresidin A 1 and two stereoisomers of penaresidin B 2' (Scheme 5), azetidine alkaloids isolated from the 0 kinawan marine sponge P enares sp., have been synthesized. In the course of our synthetic study, the correct structure of penaresidin B has been shown to be not 2 but $\mathbf{2}^{\prime}$. N atural penaresidin A is either ($2 S, 3 R, 4 S, 15 S, 16 S$)- or ($2 S, 3 R, 4 S, 15 R, 16 R$)-1 and natural penaresidin B is either ($2 S, 3 R, 4 S, 15 S$)- or ($2 S, 3 R, 4 S, 15 R$)-2'.

In 1991, penaresidin A 1 and B 2, actomyosin ATPase activators, were isolated by K obayashi et al. ${ }^{2}$ from the Okinawan marine sponge Penares sp., and characterized as a mixture of the corresponding tetraacetyl derivatives. Because nothing was known about the absolute configuration of penaresidin A and B, $\mathbf{1}$ and $\mathbf{2}$, we attempted the synthesis of the enantiomerically pure stereoisomers of $\mathbf{1}$ and $\mathbf{2}$ so as to determine the absolute configurations of the natural products. We have already reported the synthesis of penaresidin A as a preliminary communication ${ }^{3}$ and the synthesis ${ }^{1}$ of a similar azetidine alkaloid penazetidine A. ${ }^{4}$ A synthesis of a simple model compound of $\mathbf{1}$ was also reported by H iraki et al. ${ }^{5} \mathrm{H}$ erein we describe our synthesis of penaresidin A and B in detail.

Results and discussion

Synthetic plan for penaresidins

We assumed the absolute configuration of the azetidine portion of penaresidins to be $2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}$, considering the possible biogenetic relationship between penaresidins and the natural phytosphingosines. We first attempted the synthesis of penaresidin A 1, because it was reported to be the major component. ${ }^{2}$ There are two contiguous stereogenic centres in the side-chain of 1 . We therefore planned to synthesize 15,16 syn- and anti-isomers, respectively, to determine the relative stereochemistry of the natural product. We could then synthesize an additional stereo-
isomer with the correct relative stereochemistry for the chiral centres in the side-chain. Once we had synthesized $\mathbf{1}$, we could turn our attention to the synthesis of penaresidin B $\mathbf{2}$, which is reported to be the minor component. Scheme 1 shows the synthetic plan for 1. A ccording to this synthetic plan, our target molecule 1 can be prepared from a phytosphingosine derivative A. Intermediate A can be obtained by regioselective reduction of \mathbf{B}, itself derived from \mathbf{C}. We planned to prepare the sphingosine analogue C from D and E employing Garner's general method of sphingosine synthesis. ${ }^{6}$ Stereoisomers of \mathbf{D} could then be obtained from l-isoleucine in the usual manner. The basic strategy of this plan is also applicable to the synthesis of penaresidin B

Preparation of the key intermediate B

The alkynes, (12R ,13S)- and ($12 \mathrm{~S}, 13 \mathrm{~S}$)-7 (= D), were prepared and converted into the key intermediates $\mathbf{1 2}(=\mathbf{C})$ as shown in Scheme 2. The epoxide ($2 \mathrm{~S}, 3 \mathrm{~S}$)-4 was prepared from L -isoleucine 3 in 4 steps. ${ }^{7}$ R egioselective cleavage of the epoxy ring of $(2 S, 3 S)-4$ with the anion derived from dec-1-yne gave the alcohol ($3 \mathrm{~S}, 4 \mathrm{R}$)-5 (53%), which was submitted to an acetylenezipper reaction ${ }^{8}$ to give ($12 R, 13 S$)-6 in 73% yield. The hydroxy group of ($12 \mathrm{R}, 13 \mathrm{~S}$)-6 was protected as a tert-butyldimethylsilyl (TBS) ether to give ($12 \mathrm{R}, 13 \mathrm{~S}$)-7 ($=\mathbf{D}$) in 99% yield. Together with this, M itsunobu inversion ${ }^{9}$ of (12R,13S)-6 gave the inverted 3,5-dinitrobenzoate ($125,13 S$)-8 in 71% yield. A fter the

Scheme 1 Structure of penaresidins, and the synthetic plan for penaresidin A

Scheme 2 Synthesis of (15R,16S)- and (15S,16S)-penaresidin A. Reagents, conditions and yields: (a) dec-1-yne, BuLi, BF ${ }_{3}$.OEt $\mathrm{O}_{2}, \mathrm{THF}$ (53%); (b) Li, ButOK , $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}(73 \%)$; (c) TBSCI, imidazole, D M F (99\% or 96\%); (d) 3,5-D N B acid, DEA D, Ph ${ }_{3} \mathrm{P}$, THF (71\%); (e) aq. KOH , THF-M eOH (86%); (f) BuLi, THF, then G arner's aldehyde E (94\%); (g) Li, EtN H ${ }_{2}$ (quant.); (h) TBSOTf, 2,6-dimethylpyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (84% in 2 steps); (i) TsCl, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (95%); (j) m-CPBA, NaHCO_{3}, hexane (39% of 13 and 60% of 13); (k) DIBAL, toluene (84%); (I) $\mathrm{M} \mathrm{sCI}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (quant.); (m) NaH, THF (88% in 2 steps); (n) N a, naphthalene, D M E (88\%); (o) aq. H F, CH ${ }_{3} \mathrm{CN}$ (81\%); (p) A $\mathrm{C}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (95\%).
hydrolysis of ($12 \mathrm{~S}, 13 \mathrm{~S}$)-8 with aq. KOH , the resulting alcohol ($125,13 S$)-6 was converted into the corresponding TBS ether (125,135)-7 (=D) (83% in 2 steps). The anion derived from (12R,13S)-7 by treatment with BuLi was coupled with the aldehyde E ${ }^{5}$ diastereoselectively to give the erythro-isomer ($13^{\prime} \mathrm{R}, 14^{\prime} \mathrm{S}$) -9 in 94% yield. It was then reduced with lithium in ethylamine to furnish the crude amino diol (15R,16S)-10. The hydroxy groups and amino group of ($15 \mathrm{R}, 16 \mathrm{~S}$)-10 were protected as TBS ethers and as a toluene p-sulfonamide (Ts amide)
respectively to give the key intermediate, the fully protected sphingosine analogue, ($15 \mathrm{R}, 16 \mathrm{~S}$)-12 (=C) (80% in 3 steps). Similarly, (125,135)-7 was converted into ($155,16 \mathrm{~S}$)-12 (=C) (64\% in 4 steps).

Synthesis of (2S,3R,4S,15R,16S)- and (2S,3R,4S,15S,16S)penaresidin A

Epoxidation of ($15 \mathrm{R}, 16 \mathrm{~S}$)-12 with m-chloroperbenzoic acid (m CPBA) in hexane yielded ($15 \mathrm{R}, 16 \mathrm{~S}$)-13 in only 39% yield, the

Scheme 3 D etermination of the structure of 14
major isomer being the undesired α-epoxide ($15 R, 16 S$)-13'. A though various reagents were examined under different conditions for the epoxidation of $\mathbf{1 2}$, we were unable to improve the diastereoselectivity; the optimum ratio of 13:13' was ca. 4:6. The reductive opening of the epoxy ring of (15R,16S)-13 with diisobutylaluminium hydride (DIBAL) took place regioselectively to give the alcohol (15R,16S)-14 in 84\% yield.

To confirm the depicted stereochemistry of the alcohol 14, the alcohol (155,165)-14 was converted into 19 in the conventional manner as follows: (i) Na and naphthalene in DM E, (ii) aq. HF in MeCN and (iii) $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine (Scheme 3). The ${ }^{1}$ H NMR data of 19 were then compared with the published data of acetylated phytosphingosine ${ }^{10}$ and found to be same with regard to the signals for the protons at $\mathrm{C}-1$ to $\mathrm{C}-4$.
Treatment of (15R,16S)-14 with methanesulfonyl chloride (M sCl) gave the mesylate (methanesulfonate) ($15 \mathrm{R}, 16 \mathrm{~S}$)-15 in quantitative yield and this upon treatment with sodium hydride in tetrahydrofuran (THF) underwent smooth ring-closure to furnish the azetidine ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-16 (88% in 2 steps). A fter the removal of the N -Ts group by treatment with sodium naphthalenide (88%), the TBS groups of ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-17 were cleaved by treatment with hydrofluoric acid (HF) in acetonitrile to give ($2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}, 15 \mathrm{R}, 16 \mathrm{~S}$)-penaresidin A 1 in 81% yield. The overall yield was 5.9% in 13 steps based on the epoxide ($2 \mathrm{~S}, 3 \mathrm{~S}$)-4. For comparison with the naturally occurring product, ($2 S, 3 R, 4 S, 15 R, 16 S$)-1 was converted into the corresponding tetraacetyl derivative ($2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}, 11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-18. It was dextrorotatory, $[a]_{D}^{27}=+45\left(\mathrm{CHCl}_{3}\right)$. The synthesis of (2S,3R,4S,15S, 16S)-1 was achieved by a similar procedure starting from the intermediate ($155,16 \mathrm{~S}$)-12. The overall yield was 3.4% in 15 steps based on the epoxide ($2 S, 3 S$)-4. The product ($2 S, 3 \mathrm{R}$, $4 \mathrm{~S}, 15 \mathrm{~S}, 16 \mathrm{~S})$ - 1 was also acetylated to give the tetraacetyl derivative ($\left.2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}, 11^{\prime} \mathrm{S}, 12^{\prime} \mathrm{S}\right)-18,[a]_{D}^{27}=+38.0\left(\mathrm{CHCl}_{3}\right)$. \ddagger
We then carefully compared the highfield ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the mixture of the tetraacetyl derivatives derived from natural penaresidins A and B^{2} with those of the synthetic stereoisomers of 18. The spectra were very similar to each other. In the ${ }^{1} \mathrm{H} N M R$ spectrum of the naturally derived materials, however, the signal due to the proton at $\mathrm{C}-11^{\prime}$ appeared at $\delta=4.84$, while that of ($2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}, 11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-18 appeared at $\delta=4.79$. ($2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}, 11^{\prime} \mathrm{S}, 12^{\prime} \mathrm{S}$)- 18 showed its N M R signal due to the $\mathrm{C}-11^{\prime}$ proton at $\delta=4.86$. Accordingly, the $11^{\prime}, 12^{\prime}$-syn isomer must be the natural penaresidin A .

Synthesis of ($2 S, 3 R, 4 S, 15 R, 16 R$)-penaresidin A and speculation on stereochemistry of penaresidin A

Since we have already shown that the 15,16-syn isomer corresponds to natural penaresidin A, we therefore synthesized the alternative 15,16 -syn isomer ($2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}, 15 \mathrm{R}, 16 \mathrm{R}$)-1, as shown in Scheme 4. (Z)-Pent-2-en-1-ol 20 was subjected to Sharpless asymmetric epoxidation ${ }^{11}$ to give the epoxy alcohol 21 (ca. 89\% ee; 60% yield). This alcohol was purified by recrystallization of the corresponding 3,5-dinitrobenzoate 22 to afford enantiomerically enriched 21 (> 98\% ee; 42\% yield) after hydrolysis of

[^0]

Scheme 4 Synthesis of (15R ,16R)-penaresidin A. Reagents, conditions and yields: (a) TBHP, (-)-DIPT, Ti(OPri) $4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \%)$; (b) $3,5-\mathrm{D} \mathrm{NBCI}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) recrystallization (from hexane-benzene, $5: 1$) (55%); (d) aq. KOH , THF-M eOH (77\%); (e) $\mathrm{M}_{3} \mathrm{Al}, \mathrm{BuLi}$, pentane (50%); (f) $\mathrm{HBr}, \mathrm{AcOH}$ (quant.); (g) NaOM e, MeOH (79% in 2 steps).
22. Conversion of $\mathbf{2 1}$ into the epoxide ($2 S, 3 R$) - $\mathbf{4}$ was brought about by our previously described method: ${ }^{7 d}$ treatment with (i) trimethylaluminium and BuLi-pentane, (ii) $\mathrm{HBr}-\mathrm{AcOH}$ and (iii) NaOM e-M eOH (40% in 3 steps). By a similar procedure to that used earlier, the epoxide ($2 S, 3 \mathrm{R}$)-4 was finally converted into ($2 S, 3 R, 4 S, 15 R, 16 R$)-1. The overall yield was 4.5% in 13 steps based on the epoxide ($2 S, 3 \mathrm{R}$)-4 or 0.5% in 19 steps based on 20. The corresponding tetraacetyl derivative ($2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}$, $11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{R}$)-18 was also synthesized, and shown to be dextrorotatory, $[a]_{D}^{27}=+42\left(\mathrm{CHCl}_{3}\right)$.
The optical rotational values of all three synthetic stereoisomers of 18 were dextrorotatory. Since the mixture of the tetraacetyl derivatives derived from the natural penaresidins A and B was reported to be dextrorotatory, $[a]_{0}^{23}=+47.9$ $\left(\mathrm{CHCl}_{3}\right)$, the stereochemistry of the azetidine ring of the natural 1 must be $2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}$ as we assumed initially. Because of the considerable distance between the azetidine portion of 18 and the contiguous stereogenic centres at $\mathrm{C}-11^{\prime}$ and $\mathrm{C}-12^{\prime}$, ($2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}, 11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{R}$)-18 and its ($11^{\prime} \mathrm{S}, 12^{\prime} \mathrm{S}$)-isomer showed indistinguishable ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NM R spectra. We were, therefore, unable to determine the absolute configuration of the sidechain part of the natural product. ${ }^{13}$

Revised structure of penaresidin B

Following the synthesis of penaresidin A we then synthesized penaresidin B. A fter a careful study of the reported ${ }^{13} \mathrm{C}$ N M R data for the tetraacetyl derivative of natural penaresidin B we concluded that the proposed structure of penaresidin B 2 might be in error. A s mentioned earlier, the natural penaresidins were isolated and characterized as a mixture of their corresponding tetraacetyl derivatives. A structure determination of the natural penaresidins was, therefore, difficult. Comple tion of the synthesis of penaresidin A, however, made it pos-

(11'R)-43

Scheme 5 Synthesis of penaresidin B. Reagents, conditions and yields: (a) dec-1-yne, BuLi, BF \cdot.OEt t_{2}, THF (65%); (b) Li, But $\mathrm{OK}^{\mathrm{t}}, \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$ (59\%); (c) TBSCI, imidazole, DMF (93\% or 96\%); (d) 3,5-DNB acid, DEAD, Ph ${ }_{3} \mathrm{P}, \mathrm{THF}$ (83%); (e) aq. KOH, THF-M eOH (93\%); (f) Ac $\mathrm{Cl}_{2} \mathrm{O}$, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$; (g) CH2${ }_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{M} \mathrm{gBr}, \mathrm{THF}$; (h) BuLi, TH F, then G arner's aldehyde E (80\%); (i) Li, EtN H 2 (quant.); (j) TBSOTf, 2,6-dimethylpyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (70% in 2 steps); (k) TsCl, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (90\%); (I) m-CPBA, NaHCO_{3}, hexane (38%); (m) DIBAL, toluene (82%); (n) $\mathrm{M} \mathrm{sCl}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (quant.); (o) $\mathrm{NaH}, \mathrm{THF}$ (72% in 2 steps); (p) Na , naphthalene, D M E (87%); (q) aq. H F, CH $\mathrm{C}_{3} \mathrm{CN}$ (86%); (r) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (82\%).
sible for us to detect some signals arising from the tetraacetyl derivative of the natural penaresidin B from the ${ }^{13} \mathrm{C} N \mathrm{MR}$ spectrum of the acetylated natural penaresidins. There were some signals which could not be assigned as arising from the acetylated penaresidin A. In other words, these signals could arise from the acetylated penaresidin B. These signals appeared at $\delta=23.1,24.6,34.7,43.3$ and $72.7(\mathrm{ppm})$, and their chemicalshift values led us to propose the revised structure $\mathbf{2}^{\prime}$ as shown in Scheme 5.

Clarification of the structure of penaresidin B by its synthesis

 We started with a synthesis of the compound corresponding to the revised structure of penaresidin B (2'). The synthetic route was almost the same as that of penaresidin A except for the starting material. For penaresidin B, we used l-leucine 25 as the starting material instead of L -isoleucine for penaresidin A. The epoxide 26, which was prepared from L-leucine in the usual manner, ${ }^{7}$ was converted into the enantiomers of the TBS ether (12R)- and (12S)-29. A part from the main stream of the syn-

Scheme 6 Rotational isomers of penaresidin tetraacetyl derivatives
thesis, we synthesized the acetates $\mathbf{3 1}$ and $\mathbf{3 3}$, to clarify the structure of the side-chain part of penaresidin B. We compared the ${ }^{13} \mathrm{C}$ NMR spectra of 31 and 33 with that of the acetylated natural penaresidin B and found that the former fitted more closely to the natural one than the latter. We therefore became convinced that $\mathbf{2}^{\prime}$ should be penaresidin B and continued the synthesis.

In the same manner as described for the synthesis of penaresidin A, both the enantiomers (12R)- and (12S)-27 were converted into ($2 S, 3 R, 4 \mathrm{~S}, 15 \mathrm{R}$)- and ($2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}, 15 \mathrm{~S}$)-penaresidin B $\mathbf{2}^{\prime}$, respectively. The overall yields of ($2 S, 3 R, 4 S, 15 R$)- and ($2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}, 15 \mathrm{~S}$)-2' were 3.1% in 13 steps and 3.2% in 15 steps based on the epoxide 26, respectively. For a comparison with the naturally occurring product, ($2 S, 3 R, 4 S, 15 R$)- and ($2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}, 15 \mathrm{~S}$)-2' were converted into the corresponding tetraacetyl derivatives ($2 S, 3 R, 4 S, 11^{\prime} R$)- and ($2 S, 3 R, 4 S, 11^{\prime} S$)-43. These were dextrorotatory, ($\left.2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}, 11^{\prime} \mathrm{R}\right)-43: \quad[a]_{\mathrm{D}}^{27}=+35$ $\left(\mathrm{CHCl}_{3}\right) ;\left(2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}, 11^{\prime} \mathrm{S}\right)-43:[a]_{\mathrm{D}}^{27}=+47\left(\mathrm{CHCl}_{3}\right)$. Because the mixture of the tetraacetyl derivatives derived from the natural penaresidins A and B was reported to be dextrorotatory, $[a]_{D}^{23}=+47.9\left(\mathrm{CHCl}_{3}\right)$, the stereochemistry of the azetidine ring of the natural compound $\mathbf{2}^{\prime}$ must also be $2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}$ as we assumed at the beginning. Due to the long distance between the azetidine portion of 43 and the stereogenic centre at $\mathrm{C}-11^{\prime}$ ($2 S, 3 R, 4 S, 11^{\prime}$))-43 and its ($11^{\prime} \mathrm{S}$)-isomer showed indistinguishable ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R spectra. A s for the side-chain portion, we therefore could not clarify the absolute configuration of the natural product. ${ }^{13}$

E xistence of two rotational isomers of acetylated penaresidins

In the course of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R analyses of the stereoisomers of acetylated penaresidins ($\mathbf{1 8}$ and $\mathbf{4 3}$), we found that each of them exists as a mixture of two rotational isomers (a and \mathbf{b}, shown in Scheme 6) about the $\mathrm{N}-\mathrm{Ac}$ bond. Indeed 18, which has ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra like a mixture of two isomers as in the case reported by K obayashi et al. ${ }^{2}$ and H iraki et al., ${ }^{5}$ gave back the starting single isomer of 1 upon hydrolysis with aq. NaOH followed by hot aq. HCl . In the ${ }^{1} \mathrm{H}$ NMR study (NOESY) of 18, the interaction between $\mathrm{N}-\mathrm{COM}$ e and the proton at $\mathrm{C}-4$ of a as well as that between $\mathrm{N}-\mathrm{COM}$ e and the proton at $\mathrm{C}-1$ and $\mathrm{C}-2$ of \mathbf{b} could be observed. The present interpretation of the N M R properties of $\mathbf{1 8}$ and $\mathbf{4 3}$ is different from that proposed by Hiraki et al. ${ }^{5}$ A similar example of
rotational isomerism about an $\mathrm{N}-\mathrm{Ac}$ bond was reported earlier for methyl 5 -acetamido-5-deoxy-2,3,4-tri-0-methyl- α-d-xylopyranoside. ${ }^{12}$ In cooperation with Dr T. Nukada (The Institute of Physical and Chemical Research), we employed computational chemistry to clarify the existence of rotational isomers. The details concerning the computational study will be described separately.

In conclusion, we have synthesized three stereoisomers of penaresidin A 1 and two stereoisomers of penaresidin B $\mathbf{2}^{\prime}$. In the course of our synthetic study, the correct structure of penaresidin B was shown to be $\mathbf{2}^{\prime}$. In view of this result, natural penaresidin A must be either ($2 S, 3 R, 4 S, 15 S, 16 S$)- or ($2 S, 3 R, 4 S, 15 R, 16 R$)-1, and natural penaresidin B must be either ($2 S, 3 R, 4 S, 15 S$)- or ($2 S, 3 R, 4 S, 15 R$)-2'. Due to the long distance between the azetidine portion and the stereogenic centres at $\mathrm{C}-15$ and $\mathrm{C}-16$, we could not clarify the absolute configuration of the side-chain portion. For an unambiguous determination of the stereochemistry of penaresidin A, we must await the re-isolation of pure material so that we are able to compare its chiroptical and biological properties with those of our synthetic samples. ${ }^{13}$

Experimental

All bps and mps are uncorrected. IR spectra were measured as films for oils or as K Br disks for solids on a Perkin-Elmer 1640 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 60 MHz on a Hitachi R-24B spectrometer, at 270 MHz on a JEOL JNM EX 270 L spectrometer, at 500 MHz on a JEOL JNM A 500 spectrometer or at 600 MHz on a JEOL JNM A 600 instrument. The peak for TMS or solvent ($\mathrm{CHCl}_{3}: \delta$ 7.26, $\mathrm{CD}_{2} \mathrm{HOD}: \delta 3.30$) was used as the internal standard. J Values are given in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded at 67.8 MHz on a JEOL JNM EX 270 L spectrometer, at 125 MHz on a JEOL JNM A 500 spectrometer or at 150 MHz on a JEOL JNM A600. Solvent peak (CDCl_{3} : $\delta 77.0$, $\mathrm{CD}_{3} \mathrm{OD}: \delta 49.0$) was used as the internal standard. Optical rotations were measured on a Jasco DIP-1000 polarimeter. M ass spectra were recorded on a JEOL JMS-SX 102A mass spectrometer. Refractive indexes were measured on an ATAGO A bbe refractometer $1 T$.

3-M ethylpentadec-6-yn-4-ol 5

($\mathbf{3 S}, \mathbf{4 R}$)-Isomer. BuLi $\left(1.71 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexane; $96.5 \mathrm{~cm}^{3}$, 165 mmol) was added dropwise to a solution of dec-1-yne $\left(22.8 \mathrm{~cm}^{3}, 165 \mathrm{mmol}\right)$ in dry THF $\left(300 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$ under Ar , and the mixture was stirred for 30 min at $-10^{\circ} \mathrm{C}$. A fter this the solution was re-cooled to $-78^{\circ} \mathrm{C}$, and treated with $\mathrm{BF}_{3} \cdot 0 \mathrm{Et}_{2}\left(20.3 \mathrm{~cm}^{3}, 165 \mathrm{mmol}\right)$, added dropwise. The mixture was then stirred for 10 min after which a solution of the epoxide ($2 \mathrm{~S}, 3 \mathrm{~S}$)-4 ($11.2 \mathrm{~g}, 112 \mathrm{mmol}$) in dry THF ($60 \mathrm{~cm}^{3}$) was added to it. This reaction mixture was allowed to warm to room temperature with stirring during 1 h after which it was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give the alcohol ($3 \mathrm{~S}, 4 \mathrm{R}$)-5 (14.0 g , 53%) as a colourless oil, $\mathrm{n}_{\mathrm{D}}^{26} 1.4579$ (Found: C, 80.57; H, 12.72. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}$ requires $\mathrm{C}, 80.61 ; \mathrm{H}, 12.68 \%$); $[a]_{\mathrm{D}}^{28}-11.5$ (c 0.99 in M eOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3450 \mathrm{~m}(\mathrm{OH}), 1050 \mathrm{~m}(\mathrm{CO})$; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.89(9 \mathrm{H}, \mathrm{m}, \mathrm{M} \mathrm{e}), 1.10-1.70(15 \mathrm{H}, \mathrm{m}$, 2, 3, 9, 10, 11, 12, 13, 14-H), 2.00 (1 H, d, J 5, OH), 2.16 (2 $\mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.27(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 16,8$ and $2,5-\mathrm{Ha}), 2.40(1 \mathrm{H}$, ddt, J 16,4 and $2,5-\mathrm{Hb}$) and $3.48(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$.

13-M ethylpentadec-1-yn-12-ol 6

(12R,13S)-I somer. Li wire ($1.63 \mathrm{~g}, 235 \mathrm{mmol}$) was added to freshly distilled 1,3 -diaminopropane ($140 \mathrm{~cm}^{3}$) under Ar. This mixture was heated and stirred at $70^{\circ} \mathrm{C}$ for 2 h until the blue
colour was discharged, and a milky white suspension of the lithium salt was obtained. A fter the mixture had cooled to room temperature, $\mathrm{Bu}^{\text {to }} \mathrm{K}$ ($14.8 \mathrm{~g}, 130 \mathrm{mmol}$) was added to it and the stirring was continued for 15 min . U pon addition of the alcohol ($3 \mathrm{~S}, 4 \mathrm{R}$)-5 ($6.89 \mathrm{~g}, 28.9 \mathrm{mmol}$) to the reaction mixture it turned dark red. A fter being stirred for 2.5 h , the reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with diethyl ether. The extract was washed with dil. aq. HCl , water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{M} \mathrm{GSO}_{4}\right)$ and concentrated under reduced pressure The residue was chromatographed over SiO_{2} to give the alcohol (12R,13S)-6 (5.50 g , 73%), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{25} 1.4608$ (Found: C, 80.55; H, 12.70. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}$ requires $\mathrm{C}, 80.61 ; \mathrm{H}, 12.68 \%$); $[a]_{0}^{28}+8.1$ (c 0.94 in $\mathrm{MeOH})$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3380 \mathrm{~m}(\mathrm{OH}), 3310 \mathrm{~m}(\mathrm{HC=C}), 2120 \mathrm{w}$ $(\mathrm{C} \equiv \mathrm{C})$ and $1055 \mathrm{~m}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(60 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.92(6 \mathrm{H}, \mathrm{m}, \mathrm{Me})$, $1.30(20 \mathrm{H}, \mathrm{br}$ s, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14-H, OH), 1.90 $(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 3,1-\mathrm{H}), 2.17(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $3.43(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H})$.

13-M ethylpentadec-1-yn-12-yl 3,5-dinitrobenzoate 8

(12S,13S)-Isomer. $\mathrm{Ph}_{3} \mathrm{P}(13.7 \mathrm{~g}, 52.2 \mathrm{mmol})$ and $3,5-$ dinitrobenzoic acid ($11.1 \mathrm{~g}, 52.3 \mathrm{mmol}$) were added portionwise to a solution of the alcohol $(12 \mathrm{R}, 13 \mathrm{~S})-6(5.00 \mathrm{~g}, 21.0 \mathrm{mmol})$ in TH F ($100 \mathrm{~cm}^{3}$) at room temperature under Ar. A solution of DEAD ($9.14 \mathrm{~g}, 52.5 \mathrm{mmol})$ in THF $\left(30 \mathrm{~cm}^{3}\right)$ was added dropwise to this solution, and the stirring was continued overnight. The reaction mixture was then filtered through Celite, and the filtrate was concentrated under reduced pressure. The residue was diluted with hexane-EtOAc (1:1) to precipitate $\mathrm{Ph}_{3} \mathrm{PO}$ which was removed by filtration through SiO_{2}. A fter evaporation of the filtrate under reduced pressure, the residue was chromatographed over SiO_{2} to give the benzoate ($12 \mathrm{~S}, 13 \mathrm{~S}$)-8 ($6.41 \mathrm{~g}, 71 \%$), a pale yellow oil, $\mathrm{n}_{\mathrm{D}}^{26} 1.5176$ (Found: C, 63.68; H, 7.20; N, 6.38. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{~N}_{2}$ requires $\mathrm{C}, 63.87 ; \mathrm{H}, 7.46 ; \mathrm{N}, 6.48 \%$); $[a]_{D}^{28}-5.83$ (c 1.49 in CHCl_{3}); $v_{\max }$ (film)/ $\mathrm{cm}^{-1} 3305 \mathrm{~m}(\mathrm{HC=C})$, 3105 m (aromatic), 2115w ($\mathrm{C} \equiv \mathrm{C}$), 1730s ($\mathrm{C}=0$), 1660m (aromatic) and 1550 m (nitro); $\delta_{\mathrm{H}}\left(60 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.02(6 \mathrm{H}, \mathrm{m}$, Me), 1.29 ($19 \mathrm{H}, \mathrm{br} \mathrm{s}, 4,5,6,7,8,9,10,11,13,14-\mathrm{H}$), 1.90 (1 H , $\mathrm{t}, \mathrm{J} 3,1-\mathrm{H}), 2.15(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H})$ and $9.10(3$ H, m, aromatic).

13-M ethylpentadec-1-yn-12-ol 6

($\mathbf{1 2 S}, \mathbf{1 3 S}$)-Isomer. To a solution of the 3,5-dinitrobenzoate $(12 \mathrm{~S}, 13 \mathrm{~S})-8(5.75 \mathrm{~g}, 13.6 \mathrm{mmol})$ in THF-M eOH $\left(2: 1 ; 60 \mathrm{~cm}^{3}\right)$, aq. $\mathrm{KOH}\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3} ; 16 \mathrm{~cm}^{3}, 16 \mathrm{mmol}\right)$ was added at $0^{\circ} \mathrm{C}$. A fter removal of the cooling bath, the mixture was stirred for 5 h and then poured into water and extracted with diethyl ether. The extract was washed with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure The residue was chromatographed over SiO_{2} to give the alcohol (12S,13S)-6 ($2.79 \mathrm{~g}, 86 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{25} 1.4611$ (Found: C, 80.59; H, 12.79. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}$ requires C, 80.61; H, 12.68\%); $[a]_{0}^{28}-14.1$ (c 1.22 in M eOH); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3380 \mathrm{~m}$ $(\mathrm{OH}), 3310 \mathrm{~m}(\mathrm{HC} \equiv \mathrm{C})$ and $2120 \mathrm{w}(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.92(6 \mathrm{H}, \mathrm{m}, \mathrm{Me}), 1.30(20 \mathrm{H}, \mathrm{br} \mathrm{s}, 4,5,6,7,8,9,10$, 11, 13, 14-H, OH), $1.91(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 3,1-\mathrm{H}), 2.17(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $3.48(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H})$.

D iastereoisomeric purity of the alcohol 6

(12R,13S)-6 was converted into the corresponding 3,5dinitrobenzoate ($12 \mathrm{R}, 13 \mathrm{~S}$)-8 in the conventional manner. This isomer and its stereoisomer (125,135)-8 which was obtained by M itsunobu inversion, were analysed by HPLC to determine their diastereoisomeric purities. HPLC analysis [column, Senshu Pak Silica 1251-N (4.6 i.d. $\times 250 \mathrm{~mm}$); solvent, hexaneEtOAc (150:1); flow, $1.2 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; detect, at 254 nm$]$ (i) (12R ,13S)-8; R $/$ min $27.3[\sim 1.5 \%,(12 S, 13 S)-8], 28.8[\sim 98.5 \%$, (12R,13S)-8]. The diastereoisomeric purity was determined as ca. 97% de (ii) ($12 \mathrm{~S}, 13 \mathrm{~S}$)-8; $\mathrm{Rt}_{\mathrm{t}} / \mathrm{min} 27.2$ [$\left.-98.5 \%,(12 S, 13 S)-8\right]$, 28.9 [$\sim 1.5 \%,(12 \mathrm{R}, 13 \mathrm{~S})-8]$. The diastereoisomeric purity was determined as ca. 97% de.

12-tert-B utyIdimethylsilyloxy-13-methylpentadec-1-yne 7

(12R ,13S)-I somer. To a solution of ($12 \mathrm{R}, 13 \mathrm{~S}$)-6 ($4.57 \mathrm{~g}, 19.2$ $\mathrm{mmol})$ in dry D M F ($20 \mathrm{~cm}^{3}$), imidazole ($3.27 \mathrm{~g}, 48.0 \mathrm{mmol}$) and TBSCI ($4.32 \mathrm{~g}, 28.7 \mathrm{mmol}$) were added portionwise. This mixture was stirred at room temperature overnight and then quenched with MeOH . A fter this it was poured into water and extracted with diethyl ether. The extract was washed with water, saturated aq. NaHCO and brine, dried ($\mathrm{M} \mathrm{SSO}_{4}$) and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give the TBS ether (12R, 13S)-7 (6.70 g, 99\%), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{25} 1.4527$ (Found: C, 74.72; H, 12.54 . $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}$ Si requires C, $74.92 ; \mathrm{H}, 12.58 \%$); $[a]_{D}^{28}+12$ (c 0.98 , in hexane); $v_{\max }(f i l m) / \mathrm{cm}^{-1} 3315 \mathrm{~m}(\mathrm{HC} \equiv \mathrm{C}), 2120 \mathrm{w}(\mathrm{C} \equiv \mathrm{C})$ and $1255 \mathrm{~s}(\mathrm{SiM} \mathrm{e}) ; \delta_{\mathrm{H}}\left(60 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.01$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \mathrm{e}$), $0.70-$ $1.00(6 \mathrm{H}, \mathrm{m}, 13-\mathrm{Me}, 15-\mathrm{H}), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.28(19 \mathrm{H}, \mathrm{br} \mathrm{s}$, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14-H), 1.89 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 3,1-\mathrm{H}$), 2.15 (2 $\mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $3.50(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H})$.
(12S,13S)-I somer. In a manner similar to that described above, $(12 S, 13 \mathrm{~S})-6(3.18 \mathrm{~g}, 13.3 \mathrm{mmol})$ was converted into the TBS ether ($12 \mathrm{~S}, 13 \mathrm{~S}$)-7 ($4.50 \mathrm{~g}, 96 \%$), $\mathrm{n}_{\mathrm{D}}^{27} 1.4493$ (Found: C, 74.94; $\mathrm{H}, 12.60 . \mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}$ Si requires $\mathrm{C}, 74.92$; $\mathrm{H}, 12.58 \%$); $[a]_{0}^{26}-0.59$ (c 0.97 in hexane); $v_{\text {max }}(f i l m) / \mathrm{cm}^{-1} 3315 \mathrm{~m}(\mathrm{HC} \equiv \mathrm{C}), 2120 \mathrm{w}$ $(\mathrm{C} \equiv \mathrm{C})$ and $1255 \mathrm{~s}(\mathrm{SiM} \mathrm{e}) ; \delta_{\mathrm{H}}\left(60 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.01(6 \mathrm{H}, \mathrm{s}$, SiM e), 0.70-1.00 ($6 \mathrm{H}, \mathrm{m}, 13-\mathrm{M} \mathrm{e}, 15-\mathrm{H}$), $0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 1.28$ ($19 \mathrm{H}, \mathrm{br} \mathrm{s}, 4,5,6,7,8,9,10,11,13,14-\mathrm{H}$), 1.89 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 3$, $1-\mathrm{H}), 2.15(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $3.50(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H})$.

tert-B utyl (4S)-4-[(1'R)-13'-tert-butyldimethylsilyloxy-1'-hydroxy-14'-methylhexadec-2'-ynyl]-2,2-dimethyloxa-zolidine-3-carboxylate 9

($\mathbf{1 3} \mathbf{'}^{\mathbf{R}}, \mathbf{1 4} \mathbf{\prime} \mathbf{S}$)-I somer. To a solution of ($12 \mathrm{R}, 13 \mathrm{~S}$)-7(2.00 $\mathrm{g}, 5.67$ mmol) in dry THF ($30 \mathrm{~cm}^{3}$), BuLi ($1.71 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in hexane; $4.0 \mathrm{~cm}^{3}, 6.8 \mathrm{mmol}$) was added dropwise at $-10^{\circ} \mathrm{C}$ under Ar . A fter being stirred for 30 min , the mixture was treated with a solution of Garner's aldehyde ($1.56 \mathrm{~g}, 6.80 \mathrm{mmol}$) in dry TH F $\left(5 \mathrm{~cm}^{3}\right)$, added dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was then stirred and allowed to warm gradually to $-40^{\circ} \mathrm{C}$ during 1.5 h . A fter this it was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The extract was washed with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give recovered $7(0.30 \mathrm{~g}, 15 \%)$ and the title compound ($13^{\prime} \mathrm{R}, 14^{\prime} \mathrm{S}$)-9 ($2.64 \mathrm{~g}, 94 \%$ based on consumed 7), a colourless oil, $n_{D}^{26} 1.4619$ (Found: C, 67.65; H, 10.79; N, 2.58. $\mathrm{C}_{33} \mathrm{H}_{63} \mathrm{NO}_{5}$ Si requires $\mathrm{C}, 68.11 ; \mathrm{H}, 10.91 ; \mathrm{N}, 2.41 \%$); $[a]_{0}^{28}$ -21.6 (c 1.23 in CHCl_{3}); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3445 \mathrm{~m}(\mathrm{OH}), 1700 \mathrm{~s}$ ($\mathrm{C}=0$) and $1255 \mathrm{~s}(\mathrm{SiM} \mathrm{e}) ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}_{\mathrm{CDCl}}^{3}\right.$) 0.00 and 0.02 (6 H, each s, SiM e), 0.83 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,14^{\prime}-\mathrm{M} \mathrm{e}$), 0.87 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3$, $\left.16^{\prime}-\mathrm{H}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right.$), 1.00-1.70 ($19 \mathrm{H}, \mathrm{m}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}$, $\left.10^{\prime}, 11^{\prime}, 12^{\prime}, 14^{\prime}, 15^{\prime}-\mathrm{H}\right), 1.50\left(9 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.59(6 \mathrm{H}, \mathrm{br} \mathrm{s}$, 2-M e), $2.19\left(2 \mathrm{H}, \mathrm{br}\right.$ t, J 5.4, 4'-H), $3.51\left(1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{H}\right), 3.90$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 4.10(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right)$ and 4.78 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$).
($\mathbf{1 3} \mathbf{\prime} \mathbf{S}, \mathbf{1 4} \mathbf{S}$)-Isomer. In a manner similar to that described above, ($12 \mathrm{~S}, 13 \mathrm{~S}$)-7 ($4.48 \mathrm{~g}, 12.7 \mathrm{mmol}$) was converted into the title compound (13 'S, 14 'S)-9 ($5.79 \mathrm{~g}, 94 \%$ based on consumed 7; $0.76 \mathrm{~g}, 17 \%$ of 7 recovered), $\mathrm{n}_{\mathrm{D}}^{26} 1.4649$ (Found: C, 67.68; $\mathrm{H}, 10.84 ; \mathrm{N}, 2.59 . \mathrm{C}_{33} \mathrm{H}_{63} \mathrm{NO}_{5} \mathrm{Si}$ requires $\mathrm{C}, 68.11 ; \mathrm{H}, 10.91 ; \mathrm{N}$, 2.41%); $[a]_{0}^{26}-30.3$ (c 1.11 in CHCl_{3}); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3450 \mathrm{~m}$ (OH), 1695s ($\mathrm{C}=0$) and $1255 \mathrm{~s}(\mathrm{SiM} \mathrm{e}) ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 0.02 and 0.03 (6 H , each $\mathrm{s}, \mathrm{SiMe}$), $0.80\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,14^{\prime}-\mathrm{Me}\right.$), $0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3,16^{\prime}-\mathrm{H}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right.$), 1.00-1.70(19 H, $\left.\mathrm{m}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 10^{\prime}, 11^{\prime}, 12^{\prime}, 14^{\prime}, 15^{\prime}-\mathrm{H}\right), 1.50(9 \mathrm{H}, \mathrm{br} \mathrm{s}$, Bu^{t}), $1.58\left(6 \mathrm{H}\right.$, br s, 2-M e), $2.20\left(2 \mathrm{H}, \mathrm{br}\right.$ t, J 5.4, $\left.4^{\prime}-\mathrm{H}\right), 3.51$ ($1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{H}$), $3.90(1 \mathrm{H}, \mathrm{br}$ s, OH), $4.10(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.52$ $\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right)$ and $4.78(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$.

(2S,3R,4E)-2-A mino-15-tert-butyldimethylsilyloxy-16-methyl-octadec-4-ene-1,3-diol 10

$(\mathbf{1 5 R}, \mathbf{1 6 S})$-I somer. Under a stream of N_{2}, Li wire $(1.31 \mathrm{~g}, 189$
mmol) was added to ethylamine ($165 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$. A fter the stirring had been continued for $2 \mathrm{~h}<-50^{\circ} \mathrm{C}$, a solution of ($13^{\prime} \mathrm{R}, 14^{\prime} \mathrm{S}$)-9 ($7.32 \mathrm{~g}, 12.6 \mathrm{mmol}$) in dry THF ($35 \mathrm{~cm}^{3}$) was added dropwise to the mixture which was then stirred overnight whilst being allowed to warm to room temperature; it was then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (ca. $\left.20 \mathrm{~g}, 0.37 \mathrm{~mol}\right)$. A fter removal of ethylamine by evaporation, the mixture was diluted with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give the crude amine (15R,16S)-10 (6.77 g , quant.); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3355 \mathrm{~m}$ and 3300 m (OH or NH), 1250 m (SiMe e) and 1050s (CO). This compound was directly used for the next step without purification.
$(\mathbf{1 5 S}, \mathbf{1 6 S})$-I somer. In a manner similar to that described above, ($13^{\prime} \mathrm{S}, 14^{\prime} \mathrm{S}$)-9 ($5.73 \mathrm{~g}, 9.85 \mathrm{mmol}$) was converted into the crude amine ($15 \mathrm{~S}, 16 \mathrm{~S}$)-10 (5.03 g , quant.); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3360 \mathrm{~m}$ and $3300 \mathrm{~m}(\mathrm{OH}$ or NH), $1250 \mathrm{~m}(\mathrm{SiMe}$) and 1055 s (CO). This compound was directly used for the next step without purification.

(2S,3R ,4E)-2-A mino-1,3,15-tris-tert-butyldimethyIsilylox y-16-methyloctadec-4-ene 11

($\mathbf{1 5 R}, \mathbf{1 6 S}$)-I somer. To the solution of ($15 \mathrm{R}, 16 \mathrm{~S}$)-10 (5.58 g) and 2,6-dimethylpyridine ($7.3 \mathrm{~cm}^{3}, 63 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (55 cm^{3}), TBSOTf ($11.5 \mathrm{~cm}^{3}, 50.1 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ under Ar. The reaction mixture was stirred for 1 h at room temperature and then quenched with MeOH . A fter this it was poured into water and extracted with diethyl ether. The extract was washed with water, saturated aq. NaHCO_{3} and brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give the compound ($15 \mathrm{R}, 16 \mathrm{~S}$)-11 ($7.12 \mathrm{~g}, 84 \%$ based on 9), an oil, $\mathrm{n}_{\mathrm{D}}^{26} 1.4569$ (Found: C, 66.06; $\mathrm{H}, 12.23 ; \mathrm{N}, 2.07 . \mathrm{C}_{37} \mathrm{H}_{81} \mathrm{NO}_{3} \mathrm{Si}_{3}$ requires C , $66.10 ; \mathrm{H}, 12.14 ; \mathrm{N}, 2.08 \%$); $[a]_{\mathrm{D}}^{26}+4.77$ (c 1.19 in M eOH); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3385 \mathrm{w}$ (N H) and $1255 \mathrm{~m}(\mathrm{SiM} \mathrm{e}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.00(18 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{SiM} \mathrm{e}), 0.87(33 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CM} \mathrm{e}), 1.25$ (21 H, br s, $\left.7,8,9,10,11,12,13,14,16,17-\mathrm{H}, \mathrm{NH}_{2}\right), 2.00(2 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.55(3 \mathrm{H}, \mathrm{m}, 1,15-\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H})$ and $5.50(2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H})$.
$(\mathbf{1 5 S}, \mathbf{1 6 S})$-I somer. In a manner similar to that described above, $(15 \mathrm{~S}, 16 \mathrm{~S})-10(5.03 \mathrm{~g})$ was converted into the compound ($155,16 \mathrm{~S}$)-11 ($5.13 \mathrm{~g}, 77 \%$ based on 9), $\mathrm{n}_{\mathrm{D}}^{23} 1.4582$ (Found: C, 66.07; $\mathrm{H}, 12.26 ; \mathrm{N}, 2.12 . \mathrm{C}_{37} \mathrm{H}_{81} \mathrm{~N} \mathrm{O}_{3} \mathrm{Si}_{3}$ requires C, 66.10; H , 12.14; $\mathrm{N}, 2.08 \%$); $[a]_{\mathrm{D}}^{27}-0.74$ ((0.92 in M eOH); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3385 \mathrm{w}(\mathrm{NH})$ and $1255 \mathrm{~m}(\mathrm{SiM} \mathrm{e}) ; \delta_{\mathrm{H}}\left(60 \mathrm{M} \mathrm{Hz}^{2} \mathrm{CDCl}_{3}\right) 0.00$ ($18 \mathrm{H}, \mathrm{brs}, \mathrm{SiM} \mathrm{e}$), $0.87(33 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CM}$ e), $1.25(21 \mathrm{H}, \mathrm{br} \mathrm{s}, 7,8$, 9, 10, 11, 12, 13, 14, 16, 17-H, N H 2), 2.00 (2 H, m, 6-H), 2.75 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.55(3 \mathrm{H}, \mathrm{m}, 1,15-\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and 5.50 ($2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}$).

(2S,3R ,4E)-1,3,15-T ris-tert-butyldimethylsilyloxy-16-methyl-2-p-tolylsulfonylaminooctadec-4-ene 12

($\mathbf{1 5 R}, \mathbf{1 6 S}$)-Isomer. To an ice-cooled solution of (15R ,16S)-11 $(5.74 \mathrm{~g}, 8.54 \mathrm{mmol})$ in dry pyridine $\left(50 \mathrm{~cm}^{3}\right), \mathrm{TsCl}(2.44 \mathrm{~g}, 12.8$ mmol) was added, and the stirring was continued for 3 h at room temperature. The reaction mixture was then poured into dil. HCl and extracted with diethyl ether. The extract was washed with water, saturated aq. NaHCO_{3} and brine, dried ($\mathrm{M} \mathrm{GSO}_{4}$) and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give the compound ($15 \mathrm{R}, 16 \mathrm{~S}$)-12 ($6.73 \mathrm{~g}, 95 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{23} 1.4817$ (Found: $\mathrm{C}, 63.95 ; \mathrm{H}, 10.63 ; \mathrm{N}, 1.75 . \mathrm{C}_{44} \mathrm{H}_{87} \mathrm{~N} \mathrm{O}_{5} \mathrm{SSi}_{3}$ requires $\mathrm{C}, 63.94$; $\mathrm{H}, 10.61 ; \mathrm{N}, 1.70 \%$); $[a]_{0}^{27}+3.44$ (c 1.19 in CHCl_{3}); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3285 \mathrm{~m}(\mathrm{NH}), 1600 \mathrm{w}$ (aromatic), $1335 \mathrm{~m}\left(\mathrm{SO}_{2}\right), 1255 \mathrm{~m}$ (SiMe) and $1165 \mathrm{~s}\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)-0.07,-0.05$, $-0.02,0.00$ and 0.03 (total 18 H , each $\mathrm{s}, \mathrm{SiM} \mathrm{e}), 0.80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right.$), $0.85\left(9 \mathrm{H}, \mathrm{s}, ~ B u^{t}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, B u^{t}\right), 0.80-0.92(6 \mathrm{H}, \mathrm{m}, 16-\mathrm{M} \mathrm{e}$, 18-H), 1.02-1.60 ($19 \mathrm{H}, \mathrm{m}, 7,8,9,10,11,12,13,14,16,17-\mathrm{H}$), 1.95 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 2.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{M} \mathrm{e}$), $3.13(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 3.45 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2$ and $5.9,1-\mathrm{Ha}$), $3.52(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}$), 3.80 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2$ and $4.0,1-\mathrm{H}$ b), $4.23(1 \mathrm{H}, \mathrm{brt}, \mathrm{J} 6.3,3-\mathrm{H}$), 4.64
($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{NH}$), 5.22 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2$ and $7.0,4-\mathrm{H}$), 5.57 (1 $\mathrm{H}, \mathrm{dt}, \mathrm{J} 15.2$ and $6.8,5-\mathrm{H}), 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{~m}-\mathrm{Ar})$ and 7.73 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.3, o-Ar).
($\mathbf{1 5 S}, \mathbf{1 6 S}$)-I somer. In a manner similar to that described above, ($15 \mathrm{~S}, 16 \mathrm{~S}$)-11 ($5.10 \mathrm{~g}, 7.59 \mathrm{mmol}$) was converted into the compound ($15 \mathrm{~S}, 16 \mathrm{~S}$)-12 ($5.54 \mathrm{~g}, 88 \%$), $\mathrm{n}_{\mathrm{D}}^{23} 1.4811$ (Found: C, 64.12; $\mathrm{H}, 10.55 ; \mathrm{N}, 1.66 . \mathrm{C}_{44} \mathrm{H}_{87} \mathrm{~N} \mathrm{O}_{5} \mathrm{SSi}_{3}$ requires $\mathrm{C}, 63.94 ; \mathrm{H}, 10.61$; $\mathrm{N}, 1.70 \%$); $[a]_{0}^{27}+2.36$ (c 1.37 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3285 \mathrm{~m}(\mathrm{NH}), 1600 \mathrm{w}$ (aromatic), $1335 \mathrm{~m}\left(\mathrm{SO}_{2}\right), 1255 \mathrm{~m}(\mathrm{SiM} \mathrm{e})$ and $1165 \mathrm{~s}\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)-0.07,-0.05,-0.03$, $0.00,0.02$ and 0.03 (total 18 H , each s, SiM e), $0.80(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}$), $0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{t}^{\mathrm{t}}\right), 0.78-0.92(6 \mathrm{H}, \mathrm{m}, 16-\mathrm{M} \mathrm{e}$, 18-H), 1.02-1.60 ($19 \mathrm{H}, \mathrm{m}, 7,8,9,10,11,12,13,14,16,17-\mathrm{H}$), $1.95(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.41$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{M}$ e), 3.11 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 3.45 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2$ and $5.9,1-\mathrm{Ha}$), $3.52(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.80$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2$ and $4.0,1-\mathrm{H}$ b), 4.23 (1 H, brt, J $6.3,3-\mathrm{H}$), 4.64 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9 \mathrm{~Hz}, \mathrm{NH}$), $5.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5$ and $7.3,4-\mathrm{H}$), 5.57 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.5$ and $6.6,5-\mathrm{H}$), 7.28 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6, \mathrm{~m}-\mathrm{Ar}$) and 7.73 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,0-\mathrm{Ar}$).

(2S,3S,4R ,5S)-1,3,15-T ris-tert-butyIdimethylsilylox y-4,5-epoxy-16-methyl-2-p-tolyIsulfonylaminooctadecane 13

($\mathbf{1 5 R}, \mathbf{1 6 S}$)-I somer. To an ice-cooled suspension of (15R , 16S)$12(7.93 \mathrm{~g}, 9.59 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(4.14 \mathrm{~g}, 19.2 \mathrm{mmol})$ in dry hexane ($100 \mathrm{~cm}^{3}$), m-CPBA (ca. $80 \% ; 4.14 \mathrm{~g}, 19.2 \mathrm{mmol}$) was added, and the stirring was continued for 32 h at room temperature. A fter this saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and saturated aq. NaHCO_{3} were added to the reaction mixture to destroy the excess of m-CPBA. It was then stirred for 1 h and extracted with diethyl ether. The extract was washed with water, saturated aq. NaHCO_{3} and brine, dried ($\mathrm{M} \mathrm{SSO}_{4}$) and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give the undesired α-epoxide (15R,16S)-13' (4.84 g, 60%) and the desired epoxide ($15 \mathrm{R}, 16 \mathrm{~S}$)-13 ($3.13 \mathrm{~g}, 39 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{27} 1.4789$ (Found: C, 62.58 ; H, 10.46; N, 1.66. $\mathrm{C}_{44} \mathrm{H}_{87} \mathrm{NO}_{6} \mathrm{Si}_{3}$ requires C, 62.73; H, 10.41; N, 1.66\%); $[a]_{0}^{28}$ -12.8 (c 1.01 in M eOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3285 \mathrm{~m}(\mathrm{NH}), 1600 \mathrm{w}$ (aromatic), $1335 \mathrm{~m}\left(\mathrm{SO}_{2}\right), 1255 \mathrm{~m}$ (SiM e) and $1165 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)-0.05,-0.02,0.03,0.04$ and 0.05 (total 18 H , each s, SiM e), $0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.88(9$ $\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), $0.80-0.92(6 \mathrm{H}, \mathrm{m}, 16-\mathrm{Me}, 18-\mathrm{H}), 1.00-1.60(21 \mathrm{H}$, m, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17-H), 2.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ar-M} \mathrm{e)}$, $2.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0$ and $2.0,4-\mathrm{H}), 2.78(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.26(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 3.52(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2$ and 5.0 , 1-Ha), $3.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2$ and $5.0,1-\mathrm{Hb}), 3.77(1 \mathrm{H}, \mathrm{brt}, \mathrm{J}$ 5.0, 3-H), 4.76 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{NH}$), 7.28 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6, \mathrm{~m}-\mathrm{Ar}$) and $7.76(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,0-\mathrm{Ar})$.
($\mathbf{1 5 S}, \mathbf{1 6 S}$)-Isomer. In a manner similar to that described above, $(15 \mathrm{~S}, 16 \mathrm{~S})-12(5.48 \mathrm{~g}, 6.63 \mathrm{mmol})$ was converted into the undesired α-epoxide ($3.15 \mathrm{~g}, 56 \%$) and the desired epoxide (15S,16S)-13 ($2.37 \mathrm{~g}, 42 \%$), $\mathrm{n}_{\mathrm{D}}^{24} 1.4790$ (Found: C, 62.92; H, 10.34; $\mathrm{N}, 1.62 . \mathrm{C}_{44} \mathrm{H}_{87} \mathrm{~N} \mathrm{O}_{6} \mathrm{SSi}_{3}$ requires $\mathrm{C}, 62.73 ; \mathrm{H}, 10.41 ; \mathrm{N}$, 1.66%); $[a]_{0}^{26}-20\left(c 0.81\right.$ in M eOH); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3285 \mathrm{~m}$ (NH), 1600 w (aromatic), $1335 \mathrm{~m}\left(\mathrm{SO}_{2}\right), 1255 \mathrm{~m}$ (SiMe) and $1165 \mathrm{~s}\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)-0.05,-0.02,0.01,0.03$, 0.04 and 0.05 (total 18 H , each s, SiM e), $0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.85$ $\left(9 \mathrm{H}, \mathrm{s}, ~ B u^{\mathrm{t}}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{t}^{\mathrm{t}}\right), 0.78-0.92(6 \mathrm{H}, \mathrm{m}, 16-\mathrm{Me}$, 18-H), 1.00-1.60 ($21 \mathrm{H}, \mathrm{m}, 6,7,8,9,10,11,12,13,14,16$, $17-\mathrm{H}), 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{M} \mathrm{e}), 2.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0$ and $2.0,4-\mathrm{H})$, 2.78 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.27 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), $3.52(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}$), $3.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5$ and $5.0,1-\mathrm{H} a), 3.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5$ and $5.0,1-\mathrm{Hb}), 3.78(1 \mathrm{H}, \mathrm{brt}, \mathrm{J} 5.0,3-\mathrm{H}), 4.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{NH})$, $7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{~m}-\mathrm{Ar})$ and $7.76(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{o}-\mathrm{Ar})$.
($25,3 S, 4 R$)-1,3,15-T ris-tert-butyldimethylsilyloxy-16-methyl-2-p-tolylsulfonylaminooctadecan-4-ol 14
(15R,16S)-Isomer. To a stirred and cooled solution of (15R,16S)-13 ($2.62 \mathrm{~g}, 3.11 \mathrm{mmol}$) in dry toluene ($15 \mathrm{~cm}^{3}$), DIBAL ($1.01 \mathrm{~mol} \mathrm{dm}^{-1}$ in toluene; $9.2 \mathrm{~cm}^{3}, 9.3 \mathrm{mmol}$) was added dropwise at $-78^{\circ} \mathrm{C}$ under Ar . This mixture was then
warmed gradually to room temperature with stirring during 4 h after which it was quenched with MeOH . A fter stirring had been continued for 1 h , the mixture was filtered through Celite and the filter cake was washed with diethyl ether. The combined filtrate and washings were concentrated under reduced pressure and the residue was chromatographed over SiO_{2} to give the alcohol ($15 \mathrm{R}, 16 \mathrm{~S}$)-14 ($2.34 \mathrm{~g}, 84 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{23} 1.4807$ (Found: $\mathrm{C}, 62.56 ; \mathrm{H}, 10.65 ; \mathrm{N}, 1.63 . \mathrm{C}_{44} \mathrm{H}_{89} \mathrm{~N} \mathrm{O}_{6} \mathrm{SSi}_{3}$ requires C , 62.58; H, 10.62; N, 1.66\%); [a] ${ }^{28}-3.31$ (c 1.06 in M eOH); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3530 \mathrm{~m}(\mathrm{OH}), 3315 \mathrm{~m}(\mathrm{NH}), 1600 \mathrm{w}$ (aromatic), $1255 \mathrm{~m}(\mathrm{SiMe}), 835 \mathrm{~m}, 780 \mathrm{~m}$ and $665 \mathrm{~s} ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} \mathrm{CDCl}_{3}\right)$ $-0.05,-0.02,0.02,0.03,0.09$ and 0.12 (total 18 H , each s , $\mathrm{SiMe}), 0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.88\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.80-0.95(6 \mathrm{H}, \mathrm{m}$, $16-\mathrm{M} \mathrm{e}, 18-\mathrm{H}$), 1.00-1.60 ($23 \mathrm{H}, \mathrm{m}, 5,6,7,8,9,10,11,12,13$, 14, 16, 17-H), 2.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{M} \mathrm{e}$), 2.57 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.3, \mathrm{OH}$), 3.42 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 3.48-3.60 ($2 \mathrm{H}, \mathrm{m}, 2,15-\mathrm{H}$), $3.58(1 \mathrm{H}, \mathrm{dd}$, J 10.2 and $5.6,1-\mathrm{H}$ a), $3.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2$ and $6.3,1-\mathrm{H}$ b), 3.81 (1 H, dd, J 4.8 and $3.0,3-\mathrm{H}$), 4.82 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{NH}$), 7.28 (2 $\mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{~m}-\mathrm{Ar}$) and 7.74 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{o}-\mathrm{Ar}$).
(15S,16S)-I somer. In a manner similar to that described above, $(155,16 \mathrm{~S})-13(2.33 \mathrm{~g}, 2.77 \mathrm{mmol})$ was converted into the alcohol ($15 \mathrm{~S}, 16 \mathrm{~S}$)-14 ($2.05 \mathrm{~g}, 88 \%$), $\mathrm{n}_{\mathrm{D}}^{24} 1.4810$ (Found: C, $62.56 ; \mathrm{H}$ 10.68; $\mathrm{N}, 1.66 . \mathrm{C}_{44} \mathrm{H}_{89} \mathrm{NO}_{6} \mathrm{SSi}_{3}$ requires C, 62.58; H, 10.62; N , 1.66%); $[a]_{D}^{25}-12\left(c 0.73 \mathrm{in} \mathrm{MeOH}\right.$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3540 \mathrm{~m}$ (OH) , $3320 \mathrm{~m}(\mathrm{NH}), 1600 \mathrm{w}$ (aromatic), 1255 m (SiM e), 1090 s , $835 \mathrm{~m}, 775 \mathrm{~m}$ and $665 \mathrm{~s} ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)-0.05,-0.02$, $0.02,0.03,0.09$ and 0.12 (total 18 H , each s, SiM e), $0.82(9 \mathrm{H}, \mathrm{s}$, Bu'Si), 0.88 ($18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), 0.78-0.95 ($6 \mathrm{H}, \mathrm{m}, 16-\mathrm{M} \mathrm{e}, 18-\mathrm{H}$), $1.00-1.60(23 \mathrm{H}, \mathrm{m}, 5,6,7,8,9,10,11,12,13,14,16,17-\mathrm{H})$, 2.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{M} \mathrm{e}$), 2.57 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.3, \mathrm{OH}$), $3.42(1 \mathrm{H}, \mathrm{m}$, 4-H), 3.48-3.60 ($2 \mathrm{H}, \mathrm{m}, 2,15-\mathrm{H}$), $3.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2$ and 5.6 , $1-\mathrm{Ha}), 3.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2$ and $6.6,1-\mathrm{H} \mathrm{b}), 3.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.8$ and $3.0,3-\mathrm{H}), 4.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{NH}), 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{~m}-$ Ar) and $7.74(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3,0-\mathrm{Ar})$.

($25,3 \mathrm{R}, 4 \mathrm{~S}$)-3-tert-B utyldimethylsilyloxy-2-tert-butyldimethyl-silyloxymethyl-4-(11'-tert-butyldimethylsilyloxy-12'-methyl-tetradecyl)-N-p-tolylsulfonylazetidine 16

($\mathbf{1 1} \mathbf{\prime} \mathbf{R}, \mathbf{1 2} \mathbf{\prime} \mathbf{S}$)-I somer. $\mathrm{M} \mathrm{sCl}\left(0.33 \mathrm{~cm}^{3}, 4.3 \mathrm{mmol}\right)$ was added to an ice-cooled solution of ($15 \mathrm{R}, 16 \mathrm{~S}$)-14 ($2.26 \mathrm{~g}, 2.68 \mathrm{mmol}$) in dry pyridine ($12 \mathrm{~cm}^{3}$), and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ overnight. A fter having been quenched with water, the mixture was extracted with diethyl ether. The extract was washed with dil. HCl , water and brine, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and concentrated under reduced pressure to gave the crude mesylate (15R,16S)-15 (2.47 g, quant.); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3300 \mathrm{~m}$ (NH), $1360 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$ and $1255 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. M esylate ($15 \mathrm{R}, 16 \mathrm{~S}$)-15 (2.47 g , $\sim 2.68 \mathrm{mmol}$) was dissolved in dry THF ($40 \mathrm{~cm}^{3}$) and NaH (ca. 60% in mineral oil; $0.32 \mathrm{~g}, 8.0 \mathrm{mmol}$) was added to this solution at $0^{\circ} \mathrm{C}$ under Ar. The reaction mixture was stirred for 24 h at room temperature and then quenched with water. A fter neutralization with dil. HCl , the mixture was extracted with diethyl ether. The extract was washed with water, saturated aq. NaHCO 3 and brine, dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give the cyclized compound ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-16 ($1.95 \mathrm{~g}, 88 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{27} 1.4745$ (Found: C, 63.84; H, 10.61; N, 1.70. $\mathrm{C}_{44} \mathrm{H}_{87} \mathrm{NO}_{5} \mathrm{SSi}_{3}$ requires C, 63.94; H, 10.61; N, 1.70\%); [$\left.a\right]_{0}^{28}$ +40.5 (c 1.16 in CHCl_{3}); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 1600 \mathrm{w}$ (aromatic), $1345 \mathrm{~m}\left(\mathrm{SO}_{2}\right), 1255 \mathrm{~m}(\mathrm{SiM} \mathrm{e})$ and $1160 \mathrm{~s}\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}(270 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) $0.01,0.03$ and 0.04 (total 18 H , each s, SiM e), $0.84(9 \mathrm{H}$, $\left.\mathrm{s}, B u^{t}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.80-0.92(6 \mathrm{H}, \mathrm{m}$, $\left.12^{\prime}-\mathrm{Me}, 14^{\prime}-\mathrm{H}\right), 1.00-1.60\left(21 \mathrm{H}, \mathrm{m}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}\right.$, $\left.10^{\prime}, 12^{\prime}, 13^{\prime}-\mathrm{H}\right), 1.75\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 2.41$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{M} \mathrm{e}$), 3.52 ($1 \mathrm{H}, \mathrm{m}, 11^{\prime}-\mathrm{H}$), $3.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2$ and 3.2, 2- CH H-OTBS), 3.86 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2$ and 4.6, 2-CHH-OTBS), 3.97 (1 H , q-like, J 3.6, 4-H), $4.22(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.41(1 \mathrm{H}, \mathrm{dd}$, J 6.3 and 3.0 , 3-H), 7.26 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{~m}-\mathrm{Ar}$) and $7.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3$, oAr).
($\mathbf{1 1} \mathbf{\prime} \mathbf{S}, \mathbf{1 2} \mathbf{\prime} \mathbf{S}$)-Isomer. In a manner similar to that described
above, (15R ,16S)-14 ($2.01 \mathrm{~g}, 2.38 \mathrm{mmol}$) was converted into the cyclized compound ($11^{\prime} \mathrm{S}, 12^{\prime} \mathrm{S}$)-16 ($1.59 \mathrm{~g}, 81 \%$), $\mathrm{n}_{\mathrm{D}}^{26} 1.4795$ (Found: $\mathrm{C}, 63.80 ; \mathrm{H}, 10.69 ; \mathrm{N}, 1.70 . \mathrm{C}_{44} \mathrm{H}_{87} \mathrm{NO}_{5} \mathrm{SSi}_{3}$ requires C , 63.94; $\mathrm{H}, 10.61 ; \mathrm{N}, 1.70 \%$); $[a]_{0}^{24}+37.2$ (c 1.18 in CHCl_{3}); $v_{\text {max }}$ (film)/ $/ \mathrm{cm}^{-1} 1600 \mathrm{w}$ (aromatic), $1345 \mathrm{~m}\left(\mathrm{SO}_{2}\right), 1255 \mathrm{~m}(\mathrm{SiM} \mathrm{e}$), $1160 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1090 \mathrm{~s}, 835 \mathrm{~m}, 775 \mathrm{~m}$ and $665 \mathrm{~s} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.01,0.02,0.03$ and 0.04 (total 18 H , each s, SiM e), $0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right.$, $0.87\left(9 \mathrm{H}, \mathrm{s}, ~ B u^{\mathrm{t}}\right)$, $0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{t}^{\mathrm{t}}\right), 0.78-0.90$ ($6 \mathrm{H}, \mathrm{m}, 12^{\prime}-\mathrm{M} \mathrm{e}, 14^{\prime}-\mathrm{H}$), 1.00-1.60 (21 H , m, 2', 3', 4', 5', 6', 7', $\left.8^{\prime}, 9^{\prime}, 10^{\prime}, 12^{\prime}, 13^{\prime}-\mathrm{H}\right), 1.76\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{M} \mathrm{e})$, $3.52\left(1 \mathrm{H}, \mathrm{m}, 11^{\prime}-\mathrm{H}\right), 3.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2$ and $3.2,2-\mathrm{CH}$ HOTBS), 3.86 ($1 \mathrm{H}, \mathrm{dd}$, J 11.2 and 4.6, 2-CH H -OTBS), 3.97 (1 H, q-like, J 3.6, 4-H), 4.22 (1 H, m, 2-H), 4.41 (1 H, dd, J 6.3 and 3.0, 3-H), $7.26(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{~m}-\mathrm{Ar})$ and $7.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$, $0-\mathrm{Ar}$).

(2S,3R,4S)-3-tert-B utyldimethylsilylox y-2-tert-butyldimethyl-silyloxymethyl-4-(11'-tert-butyldimethylsilylox y-12'-methyltetradecyl)azetidine 17

($\mathbf{1 1} \mathbf{\prime} \mathbf{R}, \mathbf{1 2} \mathbf{\prime} \mathbf{S}$)-Isomer. Sodium naphthalenide was prepared from naphthalene $(2.73 \mathrm{~g}, 21.3 \mathrm{mmol})$ and $\mathrm{Na}(0.39 \mathrm{~g}, 17 \mathrm{mmol})$ in dry DME ($15 \mathrm{~cm}^{3}$) in the usual manner. To a solution of ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-16 ($1.76 \mathrm{~g}, 2.13 \mathrm{mmol}$) in dry DME $\left(25 \mathrm{~cm}^{3}\right)$, the prepared sodium naphthalenide solution was added dropwise at $-78^{\circ} \mathrm{C}$ under Ar . The reaction mixture was stirred for 40 min and then quenched with water. A fter being stirred for 30 min , the mixture was extracted with CHCl_{3}. The extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give the amine ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-17 ($1.26 \mathrm{~g}, 88 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{22}$ 1.4622 (Found: C, 66.27; H, 11.96; N, 2.00. C $3_{37} \mathrm{H}_{81} \mathrm{~N} \mathrm{O}_{3} \mathrm{Si}_{3}$ requires C, 66.10; H, 12.14; N, 2.08\%); [a] $]_{0}^{26}+1.82$ (c 1.09 in M eOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1255 \mathrm{~m}$ (SiM e), $1070 \mathrm{w}, 835 \mathrm{~s}$ and 775 m ; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 0.02,0.065$ and 0.07 (total 18 H , each s, SiMe), 0.83 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,12^{\prime}-\mathrm{M} \mathrm{e)}$,0.89 and 0.92 (27 H , each s, $\left.B u^{\mathrm{t}}\right), 0.85-0.90\left(3 \mathrm{H}, \mathrm{m}, 14^{\prime}-\mathrm{H}\right), 1.00-1.50\left(21 \mathrm{H}, \mathrm{m}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right.$, $\left.5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 10^{\prime}, 12^{\prime}, 13^{\prime}-\mathrm{H}\right), 1.60\left(3 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}, \mathrm{NH}\right)$, 3.48-3.67 (5 H , m, 2-CH2OTBS, 2, 4, 11'- H) and $4.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 7.3 and $5.3,3-\mathrm{H}$).
($\mathbf{1 1} \mathbf{\prime} \mathbf{S}, \mathbf{1 2} \mathbf{S}$)-Isomer. In a manner similar to that described above, ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-16 ($1.43 \mathrm{~g}, 1.73 \mathrm{mmol}$) was converted into the amine ($11^{\prime} \mathrm{S}, 12^{\prime} \mathrm{S}$)-17 ($972 \mathrm{mg}, 84 \%$), $\mathrm{n}_{\mathrm{D}}^{26} 1.4602$ (Found: C, 66.11; $\mathrm{H}, 12.01 ; \mathrm{N}, 2.02 . \mathrm{C}_{37} \mathrm{H}_{81} \mathrm{~N} \mathrm{O}_{3} \mathrm{Si}_{3}$ requires $\mathrm{C}, 66.10 ; \mathrm{H}$, 12.14; $\mathrm{N}, 2.08 \%$); $[a]_{\mathrm{D}}^{23}-7.9$ (c 0.98 in M eOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 1255 m (SiM e), 1060 w , 835 s and 775 m ; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) $0.01,0.02,0.06$ and 0.07 (total 18 H , each s, SiM e), $0.80(3 \mathrm{H}, \mathrm{d}$, J 6.6, $12^{\prime}-\mathrm{M} \mathrm{e}$), $0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.6,14^{\prime}-\mathrm{H}\right), 0.875,0.88$ and 0.91 (27 H , each $\mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), 1.00-1.53 (21 H, m, 2', $3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}$, $\left.9^{\prime}, 10^{\prime}, 12^{\prime}, 13^{\prime}-\mathrm{H}\right), 1.53-1.73\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right)$ and $1.79(1 \mathrm{H}, \mathrm{br}$ s, NH), 3.48-3.67 (5 H, m, 2-CH $\left.2 \mathrm{OTBS}, 2,4,11^{\prime}-\mathrm{H}\right)$ and 4.43 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.3$ and 5.3, $3-\mathrm{H}$).

(2S,3R ,4S)-3-H ydroxy-2-hydroxymethyl-4-(11'-hydroxy-12'methyltetradecyl)azetidine 1

($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-I somer, [(15R,16S)-penaresidin A]. To a solution of ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-17 ($1.16 \mathrm{~g}, 1.73 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}\left(30 \mathrm{~cm}^{3}\right)$, aq. HF ($46 \% ; 0.7 \mathrm{~cm}^{3}, 0.02 \mathrm{~mol}$) was added. A fter being stirred for 12 h at room temperature, the mixture was neutralized with an excess of NaHCO_{3} and concentrated under reduced pressure. The residue was filtered through Celite and the filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrate and washings were evaporated under reduced pressure. The residue was chromatographed over SiO_{2} several times to give the penaresidin ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-1 ($460 \mathrm{mg}, 81 \%$), a hygroscopic solid, mp $71-73^{\circ} \mathrm{C}$ [Found: (HRFAB-M S) M +1 , 330.2999. $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{NO}_{3}$ requires $\mathrm{m} / \mathrm{z}, 330.3008] ;[a]_{D}^{25}-30\left(c 0.38 \mathrm{in} \mathrm{MeOH}\right.$); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 3388s (OH), 2919s (CH), 1558w, 1469m, 1304w and 1112m; $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 0.87\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,12^{\prime}-\mathrm{M} \mathrm{e}\right), 0.90(3 \mathrm{H}, \mathrm{t}$, J $\left.7.3,14^{\prime}-\mathrm{H}\right), 1.12\left(1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{Ha}\right.$), 1.32 and $\sim 1.60(20 \mathrm{H}, \mathrm{br}$ s and $\left.m, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 10^{\prime}, 12^{\prime}-\mathrm{H}, 13-\mathrm{Hb}\right), 1.90(2 \mathrm{H}$,
$\left.\mathrm{m}, 1^{\prime}-\mathrm{H}\right), 3.35\left(1 \mathrm{H}, \mathrm{m}, 11^{\prime}-\mathrm{H}\right), 3.83(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.7$ and 3.4 , $2-\mathrm{CHH}-\mathrm{OH}$), 3.86 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.7$ and $4.6,2-\mathrm{CH}-\mathrm{OH}$), 4.11 (1 H , ddd, J 4.9, 4.6 and 3.4, 2-H), $4.26(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 7.3$ and 7.3 , $4-\mathrm{H})$ and $4.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.3$ and $4.9,3-\mathrm{H}) ; \delta_{\mathrm{c}}(150 \mathrm{M} \mathrm{Hz}$ $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 12.11,15.23,25.85,26.13,27.22,27.64,30.36,30.49$, $30.59,30.67,30.73,30.85,34.25,41.95,59.59,65.36,66.30$, 69.99 and 76.32.
($\mathbf{1 1}^{\prime} \mathrm{S}, \mathbf{1 2} \mathbf{2}^{\prime} \mathrm{S}$)-I somer, $[(\mathbf{1 5 S}, \mathbf{1 6 S})$-penaresidin A$]$. In a similar manner to that described above, ($11^{\prime} \mathrm{S}, 12^{\prime} \mathrm{S}$)-17 ($949 \mathrm{mg}, 1.41$ mmol) was converted into a crude product. This was chromatographed over SiO_{2} and then over Sephadex LH-20 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}, 1: 1$) to give the penaresidin (11 'S, 12 'S)-1 (A cOH salt; $510 \mathrm{mg}, 93 \%$), a slightly yellow oil, $n_{0}^{26} 1.4840$ [Found: (H R FA B$\mathrm{M} \mathrm{S}) \mathrm{M}+1330.2997 . \mathrm{C}_{19} \mathrm{H}_{40} \mathrm{NO}_{3}$ requires $\left.\mathrm{m} / \mathrm{z}, 330.3008\right] ;[a]_{0}^{26}$ -17 (c 0.34 in M eOH); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3270 \mathrm{~s}(\mathrm{OH}), 2926 \mathrm{~s}(\mathrm{CH})$, 2854s (CH), $1566 \mathrm{~m}, 1556 \mathrm{~m}, 1415 \mathrm{~m}, 1124 \mathrm{~m}$ and 653 m ; $\delta_{\mathrm{H}}(600$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 0.86\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,12^{\prime}-\mathrm{Me}\right.$), $0.91(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3$, $\left.14^{\prime}-\mathrm{H}\right), 1.17\left(1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{H}\right.$ a), 1.32 and $\sim 1.54(20 \mathrm{H}$, br s and m, 2', 3', 4', 5', 6', 7', 8', 9', 10', 12'-H, 13'-H b), 1.80-1.96 (2 $\left.\mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 1.92(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.43\left(1 \mathrm{H}, \mathrm{m}, 11^{\prime}-\mathrm{H}\right), 3.81(1 \mathrm{H}$, dd, J 12.7 and $3.9,2-\mathrm{CH}-\mathrm{OH}$), $3.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.7$ and $4.4,2-$ $\mathrm{CH}-\mathrm{OH}), 4.06(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 4.9,4.4$ and $3.9,2-\mathrm{H}), 4.21(1 \mathrm{H}, \mathrm{dt}$, J 8.3 and $6.8,4-\mathrm{H})$ and $4.51(1 \mathrm{H}$, dd, J 6.8 and $4.9,3-\mathrm{H}) ; \delta_{\mathrm{C}}(150$ M Hz; CD ${ }_{3}$ OD) 12.22, 13.91, 23.99, 26.21, 27.07, 27.43, 27.89, $30.42,30.52,30.62,30.68,30.75,30.83,35.35,41.48,59.90$, $64.98,66.56,69.79,75.43$ and 180.5.

(2S,3R,4S)-3-A cetoxy-2-acetoxymethyl-4-(11'-acetoxy-12'-methyltetradecyl)- N -acetylazetidine 18

(11 'R,12'S)-Isomer, [(15R,16S)-penaresidin A tetraacetyl derivative]. To a solution of ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-1 ($167 \mathrm{mg}, 506 \mu \mathrm{~mol}$) in dry pyridine ($10 \mathrm{~cm}^{3}$), $\mathrm{Ac}_{2} \mathrm{O}\left(1.0 \mathrm{~cm}^{3}, 11 \mathrm{mmol}\right)$ was added and the stirring was continued at room temperature overnight. A fter removal of volatile materials from the mixture by evaporation, the residue was chromatographed over SiO_{2} to give the tetraacetyl derivative ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-18 ($239 \mathrm{mg}, 95 \%$), colourless oil, $n_{D}^{27} 1.4671$ (Found: C, 65.12; H, 9.50; N, 2.78. $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{~N} \mathrm{O}_{7}$ requires $\mathrm{C}, 65.16 ; \mathrm{H}, 9.52 ; \mathrm{N}, 2.81 \%$); $[a]_{\mathrm{D}}^{27}+45$ (c 0.38 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2927 \mathrm{~s}$ (CH), 2855 s (CH), 1748s (ester), 1658s (amide), 1413m, 1376m, 1241s and 1043w; $\delta_{\mathrm{H}}(600 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 0.86$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,12^{\prime}-\mathrm{M} \mathrm{e}$), $0.89\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3,14^{\prime}-\mathrm{H}\right.$), 1.10 ($1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{Ha}$), 1.25 ($16 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}$, $\left.9^{\prime}-\mathrm{H}\right), 1.41\left(1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{H}\right.$ b), $1.48\left(2 \mathrm{H}, \mathrm{m}, 10^{\prime}-\mathrm{H}\right), 1.60(1 \mathrm{H}$, $\left.\mathrm{m}, 12^{\prime}-\mathrm{H}\right), 1.67-1.78\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{Ha}, 1^{\prime}-\mathrm{H}^{*}\right), 1.89(6 / 5 \mathrm{H}, \mathrm{s}$, N A c*), $1.92(9 / 5 \mathrm{H}, \mathrm{s}, \mathrm{NAC}), \sim 2.00\left(3 / 5 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right.$ b), $2.05(3 \mathrm{H}$, $\left.\mathrm{s}, 11^{\prime}-\mathrm{OAc}\right), 2.08\left(9 / 5 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}-\mathrm{OAc}\right), 2.11(6 / 5 \mathrm{H}, \mathrm{s}$, $\left.2-\mathrm{CH}_{2}-\mathrm{OA} \mathrm{c}^{*}\right), 2.12$ ($9 / 5 \mathrm{H}, \mathrm{s}, 3-\mathrm{OAc}$), 2.13 ($6 / 5 \mathrm{H}, \mathrm{s}, 3-\mathrm{OA} \mathrm{c}^{*}$), $\sim 2.19\left(2 / 5 \mathrm{H}, \mathrm{m} \mathrm{1}{ }^{\prime}-\mathrm{H}^{*}\right), 4.29(2 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2$ and 2.9 , 2-CHH-OAc*), $4.33\left(2 / 5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{*}\right), 4.36-4.38(3 / 5 \mathrm{H}, \mathrm{m}$, 2-H), $4.39(3 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2$ and $2.5,2-\mathrm{CHH}-\mathrm{OAc}), 4.44(1 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{H}, 4-\mathrm{H}^{*}\right), 4.59(2 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2$ and $3.4,2-\mathrm{CH} \mathrm{H}-\mathrm{OA} \mathrm{c}$), $4.69(3 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2$ and $4.4,2-\mathrm{CHH}-\mathrm{OAc}), 4.79(1 \mathrm{H}, \mathrm{m}$, $\left.11^{\prime}-\mathrm{H}\right), 5.14\left(2 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.1\right.$ and $\left.3.2,3-\mathrm{H}^{*}\right), 5.28(3 / 5 \mathrm{H}$, dd, J 7.1 and $4.2,3-H$). This compound exists as a mixture of two rotational isomers (ca. 3:2). The asterisked ${ }^{1} \mathrm{H}$ NMR signals arise from the minor isomer; $\delta_{\mathrm{c}}\left(150 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 11.55,14.53$, 20.57, 20.64, 20.67, 20.70, 20.80, 20.95, 21.18, 24.84, 25.16 25.51, 25.56, 26.84, 29.03, 29.37, 29.49, 29.54, 29.59, 30.27, $37.88,60.97,62.25,63.18,64.79,65.03,66.41,66.61,67.40$, $77.70,77.74,169.99,170.05,170.15,170.33,170.40,170.44$ and 170.95.
(11 'S,12'S)-Isomer, [(15S,16S)-penaresidin A tetraacetyl derivative]. In a manner similar to that described above, ($11^{\prime} \mathrm{S}, 12^{\prime} \mathrm{S}$)-1 (A cOH salt; $288 \mathrm{mg}, 739 \mu \mathrm{~mol}$) was converted into the tetraacetyl derivative ($11^{\prime} \mathrm{S}, 12^{\prime} \mathrm{S}$)-18 ($413 \mathrm{mg}, 83 \%$), $\mathrm{n}_{\mathrm{D}}^{24}$ 1.4648 (Found: C, 65.33; $\mathrm{H}, 9.63 ; \mathrm{N}, 2.80 . \mathrm{C}_{27} \mathrm{H}_{47} \mathrm{~N} \mathrm{O}_{7}$ requires C, 65.16; H, 9.52; N, 2.81\%); [a] ${ }_{D}^{27}+38.0$ (c 0.378 in CHCl_{3}); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2927 \mathrm{~s}$ (CH), 2855s (CH), 1747s (ester), 1658s (amide), 1413w, 1376m, 1241s and 1042w; $\delta_{\mathrm{H}}(600 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 0.88\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4,12^{\prime}-\mathrm{M} \mathrm{e}\right), 0.89\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3,14^{\prime}-\mathrm{H}\right)$,
$1.14\left(1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{H}\right.$ a), $1.26\left(16 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right.$, $9^{\prime}-\mathrm{H}$), $1.40\left(1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{H} \mathrm{b}\right), 1.45-1.57\left(3 \mathrm{H}, \mathrm{m}, 10^{\prime}, 12^{\prime}-\mathrm{H}\right)$, 1.68-1.81 ($1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{Ha}, 1^{\prime}-\mathrm{H} \mathrm{a}^{*}$), 1.89 ($6 / 5 \mathrm{H}, \mathrm{s}, \mathrm{NA} \mathrm{c}^{*}$), 1.92 ($9 / 5 \mathrm{H}, \mathrm{s}, \mathrm{NAC}$), $2.00\left(3 / 5 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{Hb}\right), 2.04(3 \mathrm{H}, \mathrm{s}$, $\left.11^{\prime}-\mathrm{OAc}\right), 2.08\left(9 / 5 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2} \mathrm{OAc}\right), 2.11(6 / 5 \mathrm{H}, \mathrm{s}$, $2-\mathrm{CH}_{2} \mathrm{OAc}^{*}$), 2.12 ($\left.9 / 5 \mathrm{H}, \mathrm{s}, 3-\mathrm{OAc}\right), 2.13$ ($6 / 5 \mathrm{H}, \mathrm{s}, 3-\mathrm{OAc}^{*}$), $\sim 2.20\left(2 / 5 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right.$ b), $4.29(2 / 5 \mathrm{H}$, dd, J 12.2 and 2.9 , 2-CHH-OA c ${ }^{*}$), $4.33\left(2 / 5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{*}\right), 4.35-4.38(3 / 5 \mathrm{H}, \mathrm{m}$, 2-H), $4.38(3 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2$ and $2.4,2-\mathrm{CHH}-\mathrm{OA} \mathrm{c}), 4.45(1 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{H}, 4-\mathrm{H}^{*}\right), 4.59$ (2/5 H, dd, J 12.2 and $3.4,2-\mathrm{CHH}-\mathrm{OA} \mathrm{c}$ *), $4.69(3 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2$ and $4.4,2-\mathrm{CHH}-\mathrm{OAc}), 4.86(1 \mathrm{H}, \mathrm{m}$, $\left.11^{\prime}-\mathrm{H}\right), 5.14\left(2 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.8\right.$ and $\left.3.4,3-\mathrm{H}^{*}\right)$ and $5.26(3 / 5 \mathrm{H}$, dd, J 7.3 and $3.9,3-\mathrm{H}$). This compound exists as a mixture of two rotational isomers (ca. 3:2). The asterisked ${ }^{1} \mathrm{H} N \mathrm{NR}$ signals arise from the minor isomer; $\delta_{\mathrm{c}}\left(150 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 11.69$, 13.90, 20.57, 20.64, 20.67, 20.70, 20.80, 20.96, 21.12, 25.16, 25.51, 25.67, 26.85, 29.03, 29.37, 29.49, 29.59, 31.35, 37.95, $60.97,62.26,63.18,64.79,65.03,66.41,66.60,67.40,76.94$, $169.96,170.04,170.12,170.33,170.38,170.43$ and 170.97 .

Determination of the relative stereochemistry of 14

To assign the stereochemistry of 14 , the alcohol (15S,16S)-14 was converted into the corresponding pentaacetyl derivative 19 in 3 steps as follows. In a manner similar to that described before, ($15 \mathrm{~S}, 16 \mathrm{~S}$)-14 ($6.9 \mathrm{mg}, 8.2 \mu \mathrm{~mol}$) was treated with sodium naphthalenide to give the amino alcohol, which was treated with aq. HF in $\mathrm{CH}_{3} \mathrm{CN}$ to give the phytosphingosine analogue. A cetylation of this compound afforded ($11^{\prime} \mathrm{S}, 12^{\prime} \mathrm{S}$)-19 (4.5 mg , quant.); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.87(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,16-\mathrm{M} \mathrm{e}), 0.89$ (3 H, t, J 7.6, 18-H), 1.00-1.80 ($23 \mathrm{H}, \mathrm{m}, 5,6,7,8,9,10,11,12$, 13, 14, 16, 17-H), 2.03, 2.047, 2.050, 2.08 (total 15 H , each s, COM e), $4.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.6$ and $3.0,1-\mathrm{Ha}$), $4.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 11.6 and $4.8,1-\mathrm{H}$ b), $4.48(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 4.6$ and 8.3, 15-H), 4.93 ($1 \mathrm{H}, \mathrm{dt}$, J 8.6 and 3.6, $4-\mathrm{H}$), 5.11 ($1 \mathrm{H}, \mathrm{dd}$, J 8.6 and $3.0,3-\mathrm{H}$) and $6.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.5, \mathrm{NH})$.

The reported peracetylphytosphingosine; ${ }^{10 \mathrm{a}} \delta_{\mathrm{H}}(360 \mathrm{MHz}$; CDCl_{3}) $0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8), 1.25(24 \mathrm{H}, \mathrm{s}$-like), $1.65(2 \mathrm{H}, \mathrm{m})$, $2.03(3 \mathrm{H}, \mathrm{s}), 2.05(6 \mathrm{H}, \mathrm{s}), 2.08(3 \mathrm{H}, \mathrm{s}), 4.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.7$ and $3.0,1-\mathrm{Ha}), 4.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.7$ and $4.8,1-\mathrm{Hb}), 4.47(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{dt}$, J 4.6 and $8.3,15-\mathrm{H}), 4.93(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 9.6$ and $3.3,4-\mathrm{H}), 5.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.3$ and $3.0,3-\mathrm{H})$ and $6.02(1 \mathrm{H}$, d, J 9.4, NH).
The ${ }^{1} \mathrm{H}$ NMR signals of 19 arising from C-1 to C-4 were almost identical with those of the reported acetylated phytosphingosine. ${ }^{10 \mathrm{a}}$

(2R , 3S)-2,3-E poxypentan-1-ol 21

To a stirred suspension of $\mathrm{Ti}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{4}\left(113 \mathrm{~cm}^{3}, 383 \mathrm{mmol}\right)$, (-)DIPT ($97.8 \mathrm{~g}, 417 \mathrm{mmol}$) and $4 \AA$ molecular sieves (ca. $210 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2.7 \mathrm{dm}^{3}\right), 20(30.0 \mathrm{~g}, 348 \mathrm{mmol})$ and TBHP ($4.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 155 \mathrm{~cm}^{3}, 698 \mathrm{mmol}$) were added dropwise successively at $-20^{\circ} \mathrm{C}$ under Ar . This reaction mixture was stirred $<-20^{\circ} \mathrm{C}$ for 2 days and then quenched with aq. tartaric acid (ca. $10 \% ; 0.9 \mathrm{dm}^{3}$). A fter removal of the cooling-bath, this mixture was stirred for 1.5 h and then filtered through Celite. Theorganic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer and extracts were washed with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{M}_{\mathrm{gSO}}^{4}\right.$) and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give the epoxy alcohol $21(21.3 \mathrm{~g}, 60 \%)$, $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3400 \mathrm{~s}(\mathrm{OH})$ and 1040 s (CO). This compound was employed for the next step immediately.

(2'R,3'S)-2',3'-E poxypentyl 3,5-dinitrobenzoate 22

To an ice-cooled solution of $21(21.3 \mathrm{~g}, 209 \mathrm{mmol})$ and pyridine $\left(50 \mathrm{~cm}^{3}, 0.62 \mathrm{~mol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(200 \mathrm{~cm}^{3}\right), 3,5-\mathrm{D} \mathrm{N} \mathrm{BCl}(62.6 \mathrm{~g}$, 272 mmol) was added and stirring was continued at $0^{\circ} \mathrm{C}$ for 20 min. A fter being quenched with water, the mixture was poured into water and extracted with diethyl ether. The extract was
washed with saturated aq. CuSO_{4}, water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and concentrated under reduced pressure to give the crude ester 22 (49.0 g). This crude compound, shown to have an 89% ee by HPLC analysis, was purified by recrystallization (from hexane-benzene $=4: 1 ; \times 3$) to give the enantiomerically enriched $22(34.0 \mathrm{~g}, 55 \%)$, slightly yellow needles, $\mathrm{mp} 71-72^{\circ} \mathrm{C}$ (Found: C, 48.42; H, 3.95; $\mathrm{N}, 9.45$. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\left.\mathrm{C}, 48.66 ; \mathrm{H}, 4.08 ; \mathrm{N}, 9.46 \%\right)$; $v_{\max }(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 1725 \mathrm{~s}\left(\mathrm{CO}_{2} \mathrm{R}\right.$), 1630m (aromatic) and 1545 s (nitro); $\delta_{\mathrm{H}}(60$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) $1.20\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{Me}\right.$), $1.40-2.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{4}^{\prime}-\mathrm{H}\right.$), 2.90-3.60 ($\left.2 \mathrm{H}, \mathrm{m}, 2^{\prime}, 3^{\prime}-\mathrm{H}\right), 4.40\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13\right.$ and $7,1^{\prime}-\mathrm{Ha}$), 4.80 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13$ and $4,1^{\prime}-\mathrm{Hb}$) and 9.10 ($3 \mathrm{H}, \mathrm{br}$ s, aromatic); H PLC analysis [column, Chiralcel OB-H ® (4.6 i.d. $\times 250 \mathrm{~mm}$); solvent, hexane-PriOH ($6: 1$); flow, $0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; detect, 254 $\mathrm{nm}] \mathrm{R}_{\mathrm{t}} / \mathrm{min} 94.6$ ($\sim 0.9 \%$, antipode of 22), 97.9 ($\sim 9.1 \%, 22$); The enantiomeric purity was determined to be $>98 \%$ ee.

(2R,3S)-2,3-E poxypentan-1-ol 21

To a solution of 22 ($27.5 \mathrm{~g}, 92.8 \mathrm{mmol}$) in THF-M eOH (1:1; $400 \mathrm{~cm}^{3}$), aq. $\mathrm{KOH}\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3} ; 94 \mathrm{~cm}^{3}, 94 \mathrm{mmol}\right)$ was added dropwise at $0^{\circ} \mathrm{C}$. A fter stirring had been continued at $0^{\circ} \mathrm{C}$ for 1 h, the mixture was poured into water and extracted with diethyl ether. The extract was washed with water and brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} and distilled to give the enriched alcohol 21 ($7.30 \mathrm{~g}, 77 \%$), a colourless oil, bp $91-92^{\circ} \mathrm{C} /$ 24 mmHg [Found: (HRFAB-M S) M $+1,103.0747 . \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$ requires m / z 103.0760]; $\mathrm{n}_{\mathrm{D}}^{25} 1.4321$; $[a]_{\mathrm{D}}^{25}+12.0$ (c 0.930 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3415 \mathrm{~s}(\mathrm{OH})$ and $1045 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}(60$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) $1.10(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{M} \mathrm{e}), 1.20-1.80(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $2.45(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.80-3.30(2 \mathrm{H}, \mathrm{m}, 2,3-\mathrm{H})$ and $3.40-4.20(2$ H, m, 1-H).

(2S,3R)-3-M ethylpentane-1,2-diol 23

To a solution of $22(7.30 \mathrm{~g}, 71.5 \mathrm{mmol})$ in dry pentane (150 cm^{3}), $\mathrm{M} \mathrm{e}_{3} \mathrm{Al}$ ($1.07 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $140 \mathrm{~cm}^{3}, 150 \mathrm{mmol}$) and BuLi ($1.64 \mathrm{~mol} \mathrm{dm}^{-3} ; 10.9 \mathrm{~cm}^{3}, 17.9 \mathrm{mmol}$) were added dropwise successively at $-50^{\circ} \mathrm{C}$ under Ar. The mixture was stirred for 2 days and then allowed to warm gradually to room temperature. It was then quenched by the addition of dil. $\mathrm{HCI}(2.0$ $\mathrm{mol} \mathrm{dm}{ }^{-3} ; 190 \mathrm{~cm}^{3}$) at $-50^{\circ} \mathrm{C}$ and extracted with diethyl ether. The extract was washed with saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} and distilled to give the diol 23 ($4.19 \mathrm{~g}, 50 \%$), a colourless oil, bp $93^{\circ} \mathrm{C} / 5 \mathrm{mmHg}$ (Found: C, $60.68 ; \mathrm{H}, 11.64 . \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 60.98 ; \mathrm{H}$, 11.94\%); $\mathrm{n}_{\mathrm{D}}^{23} 1.4466$; $[a]_{0}^{24}+9.78$ (c 1.03 in M eOH); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3355 \mathrm{vs}(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(60 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.95(6 \mathrm{H}, \mathrm{m}, \mathrm{Me})$, $1.00-1.80(3 \mathrm{H}, \mathrm{m}, 3,4-\mathrm{H}), 2.70(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $3.55(3 \mathrm{H}$, br s, 1, 2-H).

(2S,3R)-1,2-E poxy-3-methylpentane 4

(2S,3R)-Isomer. H Br (33% in AcOH; $19 \mathrm{~cm}^{3}, 106 \mathrm{~mol}$) was added dropwise to stirred and neat $23(4.14 \mathrm{~g}, 35.0 \mathrm{mmol})$ at $-5^{\circ} \mathrm{C}$. A fter the cooling-bath had been removed, the stirring was continued for 1 h . The mixture was then diluted with icewater, neutralized with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with diethyl ether. The extract was washed with brine, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and concentrated under reduced pressure to give crude $24(8.02 \mathrm{~g}$, quant.), $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1745 \mathrm{~s}\left(\mathrm{CO}_{2} \mathrm{R}\right), 1370 \mathrm{~m}$ and 1235 s . This compound was employed for the next step without further purification. To an ice-cooled NaOM e solution ($3.7 \mathrm{~mol} \mathrm{dm}^{-3}$ in $\left.\mathrm{MeOH} ; 15 \mathrm{~cm}^{3}, 56 \mathrm{mmol}\right), 24(8.02 \mathrm{~g})$ was added dropwise. A fter removal of the cooling-bath, the mixture was stirred for 1 h, diluted with water and extracted with pentane. The extract was washed with water and brine, dried $\left(\mathrm{M}_{\mathrm{gO}}^{4}\right.$) and concentrated. The residue was distilled to give the epoxide $4(2.76 \mathrm{~g}$, 79%), a colourless oil, bp $\sim 108^{\circ} \mathrm{C} / 760 \mathrm{mmH}$ g; $\delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 0.95(6 \mathrm{H}, \mathrm{m}, \mathrm{Me}), 1.10-1.70(3 \mathrm{H}, \mathrm{m}, 3,4-\mathrm{H})$ and 2.40-2.80 ($3 \mathrm{H}, \mathrm{m}, 1,2-\mathrm{H}$). The high volatility of this epoxide
made its purification difficult so that it was employed immediately in the next step.

(3R ,4R)-3-M ethylpentadec-6-yn-4-ol 5

($\mathbf{3 R}, \mathbf{4 R}$)-I somer. In a similar manner to that described for the preparation of ($35,4 \mathrm{R}$)-5, the epoxide ($2 \mathrm{R}, 3 \mathrm{R}$)-4 ($2.35 \mathrm{~g}, 23.5$ mmol) was converted into the alcohol ($3 \mathrm{R}, 4 \mathrm{R}$)-5 ($3.45 \mathrm{~g}, 62 \%$), a colourless oil, $n_{D}^{21} 1.4563$ (Found: C, 80.80; H, 12.73. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}$ requires C, 80.61; H, 12.68\%); [a] ${ }^{28}+8.45$ (c 1.10 in M eOH); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3400 \mathrm{~m}(\mathrm{OH})$ and $1055 \mathrm{~m}(\mathrm{CO})$; $\delta_{\mathrm{H}}(270 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) $0.89(9 \mathrm{H}, \mathrm{m}, \mathrm{M} \mathrm{e}), 1.10-1.65(15 \mathrm{H}, \mathrm{m}, 2,3,9,10,11$, 12, 13, 14-H), 1.87 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4, \mathrm{OH}$), 2.16 ($2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$), 2.32$2.37(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $3.59(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$.

(12R ,13R)-13-M ethylpentadec-1-yn-12-ol 6

(12R ,13R)-I somer. In a manner similar to that described for the preparation of (12R,13S)-6, compound (3R,4R)-5 (3.35 g, 14.05 mmol) was converted into the alcohol (12R ,13R)-6 (2.24 $\mathrm{g}, 66 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{21} 1.4591$ (Found: C, 80.22; H, 12.70. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}$ requires $\mathrm{C}, 80.61$; $\mathrm{H}, 12.68 \%$); $[a]_{D}^{28}+14.7$ (c 1.67 in MeOH). The IR and ${ }^{1} \mathrm{H}$ NMR spectra of (12R,13R)-6 were identical with those of $(125,13 S)-6$.

12-tert-B utyldimethylsilyloxy-13-methylpentadec-1-yne 7

(12R ,13R)-Isomer. In a manner similar to that described for the preparation of (12R,13S)-7, compound (12R,13R)-6 (2.19 $\mathrm{g}, 9.19 \mathrm{mmol}$) was converted into the TBS ether (12R,13R)-7 ($2.87 \mathrm{~g}, 89 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{21} 1.4521$ (Found: C, 74.89 ; H, 12.51. $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}$ Si requires $\mathrm{C}, 74.92 ; \mathrm{H}, 12.58 \%$); $[a]_{D}^{28}+1.1$ (c 1.1, in hexane). The IR and ${ }^{1} \mathrm{H}$ NM R spectra of (12R,13R)-7 were identical with those of $(12 S, 13 S)-7$.

tert-B utyl (4S)-4-[(1'R)-13'-tert-butyldimethylsilyloxy-1'-hydroxy-14'-methylhexadec-2'-ynyl]-2,2-dimethyloxa-zolidine-3-carboxylate 9

($\mathbf{1 3} \mathbf{3}^{\prime} \mathbf{R}, \mathbf{1 4}$ ')-I somer. In a manner similar to that described for thepreparation of ($13^{\prime} \mathrm{R}, 14^{\prime} \mathrm{S}$)-9, compound (12R , 13R)-7(2.80g, 7.94 mmol) was converted into the title compound ($13^{\prime} \mathrm{R}, 14^{\prime} \mathrm{R}$)$9(3.63 \mathrm{~g}, 83 \%$ based on consumed $7 ; 0.14 \mathrm{~g}, 5 \%$ of 7 recovered), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{25} 1.4640$ (Found: C, 67.89; H, 10.33; N, 2.41. $\mathrm{C}_{33} \mathrm{H}_{63} \mathrm{NO}_{5} \mathrm{Si}$ requires C, 68.11; $\left.\mathrm{H}, 10.91 ; \mathrm{N}, 2.41 \%\right) ;[a]_{\mathrm{D}}^{27}-29.0$ (c 1.11 in CHCl_{3}); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3400 \mathrm{~m}(\mathrm{OH}), 1700 \mathrm{~s}(\mathrm{C}=0)$, $1255 \mathrm{~m}(\mathrm{SiM} \mathrm{e}) ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.01$ and $0.02(6 \mathrm{H}$, each s, SiM e), 0.80 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,14^{\prime}-\mathrm{M} \mathrm{e)}$,0.866 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3,16^{\prime}-\mathrm{H}$), $0.873\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right.$), 1.00-1.70(19 H, m, $5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 10^{\prime}, 11^{\prime}$, $\left.12^{\prime}, 14^{\prime}, 15^{\prime}-\mathrm{H}\right), 1.50\left(9 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right.$), 1.58 (6 H, br s, 2-M e), 2.19 ($2 \mathrm{H}, \mathrm{brt}, \mathrm{J} 5.4,4^{\prime}-\mathrm{H}$), $3.51\left(1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{H}\right), 3.90(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$, $4.10(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.51\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right)$ and $4.76(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$.

(2S,3R ,4E)-2-A mino-15-tert-butyldimethylsilyloxy-16-methyl-octadec-4-ene-1,3-diol 10

(15R, 16 R)-I somer. In a manner similar to that described for the preparation of ($15 \mathrm{R}, 16 \mathrm{~S}$)-10, compound ($13^{\prime} \mathrm{R}, 14^{\prime} \mathrm{R}$)-9 $(2.40 \mathrm{~g}, 4.12 \mathrm{mmol})$ was converted into the crude amine (15R ,16R)-10 (2.02 g, quant.), $v_{\text {max }}$ (film)/ $/ \mathrm{cm}^{-1} 3355 \mathrm{~m}$ and $3300 \mathrm{~m}(\mathrm{OH}$ or NH), 1255 m (SiM e) and 1055s (CO). This compound was directly used for the next step without purification.

(2S,3R ,4E)-2-A mino-1,3,15-tris-tert-butyldimethyIsilyloxy-16-methyloctadec-4-ene 11

($\mathbf{1 5 R}, \mathbf{1 6 R}$)-I somer. In a manner similar to that described for the preparation of ($15 \mathrm{R}, 16 \mathrm{~S}$)-11, compound (15R ,16R)-10 (2.02 g) was converted into the compound (15R,16R)-11 ($2.30 \mathrm{~g}, 83 \%$ based on 9), an oil, $\mathrm{n}_{\mathrm{D}}^{25} 1.4569$ (Found: C, 65.87; H, 12.09; N, 2.05. $\mathrm{C}_{37} \mathrm{H}_{81} \mathrm{NO}_{3} \mathrm{Si}_{3}$ requires $\left.\mathrm{C}, 66.10 ; \mathrm{H}, 12.14 ; \mathrm{N}, 2.08 \%\right) ;[a]_{0}^{26}$ +2.50 (c 1.01 in M eOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3385 \mathrm{w}$ (N H), 1255 m (SiM e) and $835 \mathrm{~s} ; \delta_{\mathrm{H}}\left(60 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.00$ ($18 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{SiMe}$), $0.87(33 \mathrm{H}, \mathrm{brs}, \mathrm{CM}$ e), $1.25(21 \mathrm{H}, \mathrm{br} \mathrm{s}, 7,8,9,10,11,12,13,14$, 16, 17-H, N H 2), $2.00(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.55$ (3 $\mathrm{H}, \mathrm{m}, 1,15-\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $5.50(2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H})$.

(2S,3R ,4E)-1,3,15-T ris-tert-butyldimethylsilyloxy-16-methyl-2-p-tolylsulfonylaminooctadec-4-ene 12

(15R,16R)-Isomer. In a manner similar to that described for the preparation of ($15 R, 16 \mathrm{~S}$)-12, compound ($15 R, 16 \mathrm{R}$)-11 ($2.17 \mathrm{~g}, 3.23 \mathrm{mmol}$) was converted into compound (15R ,16R)-12 ($2.30 \mathrm{~g}, 86 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{26} 1.4780$ (Found: $\mathrm{C}, 63.86$; H 10.54; $\mathrm{N}, 1.65 . \mathrm{C}_{44} \mathrm{H}_{87} \mathrm{~N} \mathrm{O}_{5} \mathrm{SSi}_{3}$ requires C , 63.94; $\mathrm{H}, 10.61$; N 1.70%); $[a]_{0}^{26}-0.33$ (c 1.06 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3290 \mathrm{~m}$ (NH), 1600 w (aromatic), $1335 \mathrm{~m}\left(\mathrm{SO}_{2}\right), 1255 \mathrm{~m}(\mathrm{SiMe})$, $1165 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$ and $835 \mathrm{~s} ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.06,-0.05$ $-0.02,0.00,0.02$ and 0.03 (total 18 H , each s, SiM e), $0.79(9 \mathrm{H}$ s, But), $0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.78-0.92(6 \mathrm{H}, \mathrm{m}$, 16-M e, 18-H), 1.02-1.60 ($19 \mathrm{H}, \mathrm{m}, 7,8,9,10,11,12,13,14,16$ $17-\mathrm{H}$), 1.94 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 2.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 3.11 ($1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}$), 3.45 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2$ and $5.9,1-\mathrm{Ha}$), $3.52(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}$), $3.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2$ and $4.0,1-\mathrm{Hb}$), $4.23(1 \mathrm{H}, \mathrm{brt}, \mathrm{J} 6.3,3-\mathrm{H})$, 4.64 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{NH}$), $5.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5$ and $7.3,4-\mathrm{H}$), 5.57 ($1 \mathrm{H}, \mathrm{dt}$, J 15.5 and $6.6,5-\mathrm{H}$), 7.28 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6, \mathrm{~m}-\mathrm{Ar}$) and $7.73(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6, \mathrm{o}-\mathrm{Ar})$.

(2S,3S,4R ,5S)-1,3,15-T ris-tert-butyldimethylsilyloxy-4,5-epoxy-16-methyl-2-p-tolyIsulfonylaminooctadecane 13

($15 \mathrm{R}, \mathbf{1 6 R}$)-Isomer. In a manner similar to that described for the preparation of (15R,16S)-13, compound (15R,16R)-12 $(2.28 \mathrm{~g}, 2.76 \mathrm{mmol})$ was converted into the unwanted α-epoxide ($15 \mathrm{R}, 16 \mathrm{~S}$)-13' ($1.35 \mathrm{~g}, 58 \%$) and the desired epoxide ($15 \mathrm{R}, 16 \mathrm{R}$)13 ($967 \mathrm{mg}, 42 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{26} 1.4787$ (Found: C, 62.66; $\mathrm{H}, 10.61 ; \mathrm{N}, 1.64 . \mathrm{C}_{44} \mathrm{H}_{87} \mathrm{~N} \mathrm{O}_{6} \mathrm{SSi}_{3}$ requires C, 62.73; H, 10.41; $\mathrm{N}, 1.66 \%$); $[a]_{0}^{27}+15.3$ (c 1.00 in M eOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3290 \mathrm{~m}(\mathrm{NH}), 1600 \mathrm{w}$ (aromatic), $1340 \mathrm{~m}\left(\mathrm{SO}_{2}\right), 1255 \mathrm{~m}(\mathrm{SiM} \mathrm{e})$ and $1165 \mathrm{~s}\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.05,-0.02,0.01$, $0.03,0.04$ and 0.05 (total 18 H , each s, SiM e), $0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right.$, $0.84\left(9 \mathrm{H}, \mathrm{s}, ~ B u^{\mathrm{t}}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.78-0.92(6 \mathrm{H}, \mathrm{m}, 16-\mathrm{Me}$, $18-\mathrm{H}$), $1.00-1.60$ ($21 \mathrm{H}, \mathrm{m}, 6,7,8,9,10,11,12,13,14,16$, $17-\mathrm{H}), 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{ArM}$ e), 2.67 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0$ and $2.0,4-\mathrm{H}$), 2.78 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $3.27(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.52(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H})$, 3.55 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5$ and $5.0,1-\mathrm{H}$ a), 3.71 (1 H , dd, J 10.5 and $5.0,1-\mathrm{Hb}), 3.78(1 \mathrm{H}, \mathrm{br}$ t, J $5.0,3-\mathrm{H}), 4.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{NH})$, 7.28 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{~m}-\mathrm{Ar}$) and 7.76 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{o}-\mathrm{Ar}$).

(2S,3S,4R)-1,3,15-T ris-tert-butyldimethylsilylox y-16-methyl-2-p-tolyIsulfonylaminooctadecan-4-ol 14

(15R ,16R)-Isomer. In a manner similar to that described for the preparation of ($15 \mathrm{R}, 16 \mathrm{~S}$)-14, compound (15R,16R)-13 (952 $\mathrm{mg}, 1.13 \mathrm{mmol}$) was converted into the alcohol (15R,16R)-14 ($779 \mathrm{mg}, 82 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{26} 1.4811$ (Found: C, 62.75; H 10.83; $\mathrm{N}, 1.62 . \mathrm{C}_{48} \mathrm{H}_{89} \mathrm{~N} \mathrm{O}_{6} \mathrm{SSi}_{3}$ requires C, 62.58; H, 10.62; N, 1.66\%); [a] $]_{\mathrm{D}}^{27}-7.8$ (c 0.75 in MeOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3545 \mathrm{~m}$ (OH), 3325m (NH), 1600w (aromatic), 1255m (SiM e), 1165s $\left(\mathrm{SO}_{2}\right), 1095 \mathrm{~s}, 835 \mathrm{~s}$ and $780 \mathrm{~m} ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.05$ $-0.02,0.02,0.03,0.09$ and 0.12 (total 18 H , each $\mathrm{s}, \mathrm{SiMe}$), $0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}} \mathrm{Si}\right), 0.88\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.78-0.95(6 \mathrm{H}, \mathrm{m}$, $16-\mathrm{M} \mathrm{e}, 18-\mathrm{H}$), 1.00-1.60 ($23 \mathrm{H}, \mathrm{m}, 5,6,7,8,9,10,11,12,13$, 14, 16, 17-H), 2.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArM} \mathrm{e}$), 2.57 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.3, \mathrm{OH}$), 3.42 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 3.48-3.60 ($2 \mathrm{H}, \mathrm{m}, 2,15-\mathrm{H}$), 3.58 ($1 \mathrm{H}, \mathrm{dd}$, J 10.2 and $5.6,1-\mathrm{Ha}$), $3.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2$ and $6.6,1-\mathrm{H}$ b), 3.81 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.8$ and 3.0, 3-H), 4.82 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{NH}$), 7.28 (2 H, d, J 8.3, m-Ar) and 7.74 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{o}-\mathrm{Ar}$).
(2S,3R , 4S)-3-tert-B utyIdimethyIsilyloxy-2-tert-butyldimethyl-silyloxymethyl-4-(11'-tert-butyldimethylsilyloxy-12'-methyl-tetradecyl)-N-p-tolylsulfonylazetidine 16
($\mathbf{1 1} \mathbf{1}^{\prime} \mathbf{R}, \mathbf{1 2}$ ')-I somer. In a manner similar to that described for the preparation of ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-16, compound ($15 \mathrm{R}, 16 \mathrm{R}$)-14 ($762 \mathrm{mg}, 902 \mu \mathrm{~mol}$) was converted into the cyclized compound ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{R}$)-16 ($578 \mathrm{mg}, 78 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{25} 1.4799$ (Found: C, 63.67; $\mathrm{H}, 10.50 ; \mathrm{N}, 1.65 . \mathrm{C}_{44} \mathrm{H}_{87} \mathrm{~N} \mathrm{O}_{5} \mathrm{SSi}_{3}$ requires C , $63.94 ; \mathrm{H}, 10.61 ; \mathrm{N}, 1.70 \%$); $[a]_{\mathrm{D}}^{26}+36.3$ (c 1.02 in CHCl_{3}); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 1600 \mathrm{w}$ (aromatic), $1255 \mathrm{~m}(\mathrm{SiM} \mathrm{e}), 1160 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$, $1095 \mathrm{~m}, 835 \mathrm{~s}, 775 \mathrm{~m}$ and $670 \mathrm{~s} ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.01,0.02$,
0.03 and 0.04 (total 18 H , each s, SiM e), $0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.87$ $\left(9 \mathrm{H}, \mathrm{s}, ~ B u^{\mathrm{t}}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, B u^{\mathrm{t}}\right), 0.78-0.90\left(6 \mathrm{H}, \mathrm{m}, 12^{\prime}-\mathrm{Me}\right.$, $\left.14^{\prime}-\mathrm{H}\right), 1.00-1.60\left(21 \mathrm{H}, \mathrm{m}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 10^{\prime}, 12^{\prime}\right.$, $\left.13^{\prime}-\mathrm{H}\right), 1.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right), 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 3.52(1 \mathrm{H}, \mathrm{m}$, $11^{\prime}-\mathrm{H}$), 3.80 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2$ and 3.2, 2-CH H-OTBS), 3.86 (1 H, dd, J 11.2 and 4.6, 2-CH H-OTBS), 3.97 (1 H, q-like, J 3.6, $4-\mathrm{H}), 4.22(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.3$ and $3.0,3-\mathrm{H})$, $7.26(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{~m}-\mathrm{Ar})$ and $7.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{o}-\mathrm{Ar})$.
($2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}$)-3-tert-B utyldimethylsilyloxy-2-tert-butyldimethyl-silyloxymethyl-4-(11'-tert-butyldimethylsilylox y-12'-methyltetradecyl)azetidine 17
($\mathbf{1 1 ^ { \prime }} \mathbf{R}, \mathbf{1 2}$ 'R)-I somer. In a manner similar to that described for the preparation of ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-17, compound ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{R}$)-16 ($565 \mathrm{mg}, 684 \mu \mathrm{~mol}$) was converted into the amine ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{R}$)-17 ($416 \mathrm{mg}, 91 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{25} 1.4619$ (Found: C, 66.52; $\mathrm{H}, 12.08$; $\mathrm{N}, 1.69 . \mathrm{C}_{35} \mathrm{H}_{75} \mathrm{NSi}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 66.10 ; \mathrm{H}, 12.14 ; \mathrm{N}$, 2.08\%); $[\alpha]_{0}^{26}-1.79$ (c 1.11 in M eOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1255 \mathrm{~m}$ (SiM e), 1060w, 835s and $775 \mathrm{~m} ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.01$, $0.02,0.06$ and 0.07 (total 18 H , each $\mathrm{s}, \mathrm{SiMe}$), $0.80(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $6.6,12^{\prime}-\mathrm{Me}$ e), $0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.6,14^{\prime}-\mathrm{H}\right), 0.875,0.88$ and 0.91 (27 H , each $\mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), $1.00-1.53\left(21 \mathrm{H}, \mathrm{m}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right.$, $\left.9^{\prime}, 10^{\prime}, 12^{\prime}, 13^{\prime}-\mathrm{H}\right), 1.53-1.73\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 1.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH), 3.48-3.67 (5 H, m, 2-CH $\mathrm{O}_{2} \mathrm{OTBS}, 2,4,11^{\prime}-\mathrm{H}$) and 4.43 (1 H, dd, J 7.3 and 5.3, 3-H).

(2S,3R ,4S)-3-H ydroxy-2-hydroxymethyl-4-(11'-hydroxy-12'methyltetradecyl)azetidine 1

($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{R}$)-I somer, [(15R ,16R)-penaresidin A]. In a manner similar to that described for the preparation of ($11^{\prime} \mathrm{S}, 12^{\prime} \mathrm{S}$)-1, compound ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{R}$)-17 ($404 \mathrm{mg}, 601 \mu \mathrm{~mol}$) was converted into the penaresidin (11 'S,12'S)-1 (A cOH salt; $199 \mathrm{mg}, 85 \%$), a slightly yellow oil, $n_{D}^{27} 1.4810$ [Found: (HRFAB-M S) M +1 , $330.3001 . \mathrm{C}_{19} \mathrm{H}_{40} \mathrm{NO}_{3}$ requires $\left.\mathrm{m} / \mathrm{z} 330.3008\right] ;[a]_{0}^{26}-0.4$ (c 0.36 in M eOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3270 \mathrm{~s}(\mathrm{OH}), 2926 \mathrm{~s}$ (CH), 2854s (CH), 1566m, $1556 \mathrm{~m}, 1415 \mathrm{~m}, 1122 \mathrm{~m}$ and $653 \mathrm{~m} ; \delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 0.86\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,12^{\prime}-\mathrm{Me}\right.$), $0.91(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3$, $\left.14^{\prime}-\mathrm{H}\right), 1.17\left(1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{H}\right.$ a), 1.32 and $\sim 1.54(20 \mathrm{H}$, br s and $\mathrm{m}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 10^{\prime}, 12^{\prime}-\mathrm{H}, 13-\mathrm{Hb}$), 1.80-1.96 (2 $\left.\mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 1.91(3 \mathrm{H}, \mathrm{s}, \mathrm{A}), 3.43\left(1 \mathrm{H}, \mathrm{m}, 11^{\prime}-\mathrm{H}\right), 3.81(1 \mathrm{H}$, dd, J 12.7 and $3.9,2-\mathrm{CHH}-\mathrm{OH}$), $3.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.7$ and 4.4, 2-CH H-OH), 4.06 (1 H, ddd, J 4.9, 4.4 and 3.9, 2-H), 4.22 (1 $\mathrm{H}, \mathrm{dt}, \mathrm{J} 8.3$ and $6.8,4-\mathrm{H}), 4.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.8$ and $4.9,3-\mathrm{H})$; $\delta_{\mathrm{c}}\left(125 \mathrm{M} \mathrm{Hz} \mathrm{CD}_{3} \mathrm{OD}\right) 12.23,13.90,23.85,26.19,27.09,27.44$, $27.81,30.43,30.53,30.65,30.71,30.76,30.85,35.35,41.50$, 59.76, 65.12, 66.46, 69.85 and 75.41 .

(2S,3R ,4S)-3-A cetoxy-2-acetoxymethyl-4-(11'-acetox y-12'-methyltetradecyl)-N-acetylazetidine 18

($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{R}$)-isomer, [(15R,16R)-penaresidin A tetraacetyl derivative]. In a manner similar to that described for the preparation of ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-18, compound ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{R}$)-1 (AcOH salt; $24 \mathrm{mg}, 61 \mu \mathrm{~mol}$) was converted into thetetraacetyl derivative ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{R}$)-18 ($29 \mathrm{mg}, 95 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{27} 1.4653$ (Found: C, 64.87; H, 9.44; N, 2.81. $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{NO}_{7}$ requires C , 65.16; H, 9.52; N, 2.81\%); $[a]_{\mathrm{D}}^{27}+42$ (c 0.41 in CHCl_{3}); $v_{\text {max }}$ (film)/cm ${ }^{-1}$ 2928s (CH), 2855s (CH), 1746s (ester), 1657s (amide), 1458m, 1414w, 1376m, 1241s, 1042w, 1022w and 952w; $\left.\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.88(3 \mathrm{H}, \mathrm{d}, \mathrm{J}) 6.4,12^{\prime}-\mathrm{M} \mathrm{e}\right), 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 7.3, 14'-H), 1.14 ($1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{Ha}$), 1.26 ($16 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}, 3^{\prime}, 4^{\prime}$, $\left.5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}-\mathrm{H}\right), 1.40\left(1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{H}\right.$ b), 1.45-1.57 (3 H, m, 10', 12'-H), 1.68-1.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{Ha}, \mathrm{l}^{\prime}-\mathrm{H}^{*}$), 1.89 ($6 / 5 \mathrm{H}, \mathrm{s}$, N A c* ${ }^{*}$, 1.92 ($9 / 5 \mathrm{H}, \mathrm{s}, \mathrm{NAC}$), $\sim 2.00\left(3 / 5 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{Hb}\right), 2.04$ (3 $\left.\mathrm{H}, \mathrm{s}, 11^{\prime}-\mathrm{OAc}\right), 2.08$ ($9 / 5 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2} \mathrm{OAc}$), $2.11(6 / 5 \mathrm{H}, \mathrm{s}$, 2-CH $\mathrm{C}^{\left.-O A c^{*}\right)}$, 2.12 ($9 / 5 \mathrm{H}, \mathrm{s}, 3-\mathrm{OAc}$), $2.13(6 / 5 \mathrm{H}, \mathrm{s}$, $\left.3-\mathrm{OA} \mathrm{c}^{*}\right), \sim 2.20\left(2 / 5 \mathrm{H}, \mathrm{m}, \mathrm{1}^{\prime}-\mathrm{H}^{*}\right), 4.29(2 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2$ and $\left.2.9,2-\mathrm{CHH}-\mathrm{OA} \mathrm{c}^{*}\right), 4.33\left(2 / 5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{*}\right), 4.35-4.38$ ($3 / 5$ $\mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.38(3 / 5 \mathrm{H}, \mathrm{dd}$, J 12.2 and $2.4,2-\mathrm{CH}$ H-OA C), 4.45 $\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 4-\mathrm{H}^{*}\right), 4.59(2 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2$ and 3.4 , 2-CHH-OA c ${ }^{*}$), 4.69 ($3 / 5 \mathrm{H}, \mathrm{dd}$, J 12.2 and $4.4,2-\mathrm{CHH}-\mathrm{OAc}$),
$4.86\left(1 \mathrm{H}, \mathrm{m}, 11^{\prime}-\mathrm{H}\right), 5.14\left(2 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.8\right.$ and $\left.3.4,3-\mathrm{H}^{*}\right)$ and $5.26(3 / 5 \mathrm{H}$, dd, J 7.3 and $3.9,3-\mathrm{H}$). This compound exists as a mixture of two rotational isomers (ca. 3:2). The asterisked ${ }^{1} \mathrm{H}$ NMR signals are due to the minor isomer; $\delta_{\mathrm{c}}(125 \mathrm{MHz}$; CDCl_{3}) 11.69, 13.90, 20.57, 20.67, 20.79, 20.95, 21.13, 25.15 25.55, 25.66, 26.82, 29.01, 29.47, 31.32, 37.93, 60.94, 62.24, 63.16, 64.76, 65.00, 66.38, 66.59, 67.37, 76.91, 169.97, 170.05, $170.12,170.37$ and 170.96 .

(4S)-2-M ethylpentadec-6-yn-4-ol 27

In a manner similar to that described for the preparation of ($35,4 \mathrm{R}$)-5, the epoxide $\mathbf{2 6}(2.00 \mathrm{~g}, 20.0 \mathrm{mmol}$) was converted into the alcohol 27 ($3.10 \mathrm{~g}, 65 \%$), a colourless oil, $n_{D}^{25} 1.4485$ (Found: C, 80.58; $\mathrm{H}, 12.48 . \mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}$ requires $\mathrm{C}, 80.61 ; \mathrm{H}, 12.68 \%$) $[a]_{0}^{24}-18.6$ (c 1.32 in M eOH); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3400 \mathrm{~m}(\mathrm{OH})$, $3315 \mathrm{~m}(\mathrm{HC} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}\left(60 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 0.70-1.00 ($9 \mathrm{H}, \mathrm{m}, \mathrm{Me}$), 1.10-1.70 ($15 \mathrm{H}, \mathrm{m}, 2,3,9,10,11,12,13,14-\mathrm{H}$), 1.87 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $5, \mathrm{OH}), 2.00-2.40(4 \mathrm{H}, \mathrm{m}, 5,8-\mathrm{H})$ and $3.65(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$.

14-M ethylpentadec-1-yn-12-ol 28

(12R)-Isomer. In a manner similar to that described for the preparation of ($12 \mathrm{R}, 13 \mathrm{~S}$) -6 , compound 27 ($8.86 \mathrm{~g}, 37.2 \mathrm{mmol}$) was converted into the alcohol (12R)-28 (5.19 g, 59\%), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{25} 1.4561$ (Found: C, 80.52; H, 12.39. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}$ requires $\mathrm{C}, 80.61$; $\mathrm{H}, 12.68 \%$); $[a]_{\mathrm{D}}^{27}-6.14$ (c 1.15 in M eOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3400 \mathrm{~m}(\mathrm{OH}), 3315 \mathrm{~m}(\mathrm{CH} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.91(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 5, \mathrm{M} \mathrm{e}), 1.10-1.70(20 \mathrm{H}, \mathrm{m}, 4,5,6,7,8$, $9,10,11,13,14-\mathrm{H}, \mathrm{OH}), 1.70-2.40(3 \mathrm{H}, \mathrm{m}, 1,3-\mathrm{H})$ and 3.65 ($1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}$).

(12S)-14-M ethylpentadec-1-yn-12-yl 3,5-dinitrobenzoate 30

In a manner similar to that described for the preparation of ($12 \mathrm{~S}, 13 \mathrm{~S}$)-8, compound (12R)-28 ($4.14 \mathrm{~g}, 17.4 \mathrm{mmol}$) was converted into the 3,5 -dinitrobenzoate 30 ($6.24 \mathrm{~g}, 83 \%$), a pale yellow solid, mp $41-43^{\circ} \mathrm{C}$ (Found: C, 64.06; H, 7.45; N, 6.46. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{~N}_{2}$ requires $\mathrm{C}, 63.87 ; \mathrm{H}, 7.46 ; \mathrm{N}, 6.48 \%$); $[a]_{0}^{26}+4.67$ (c 1.07 in $\left.\mathrm{CHCl}_{3}\right)$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3315 \mathrm{w}(\mathrm{HC=C}), 3100 \mathrm{w}$ (aromatic), $1730 \mathrm{~s}(\mathrm{C}=0)$ and 1550 m (nitro); $\delta_{\mathrm{H}}\left(60 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 0.95 ($6 \mathrm{H}, \mathrm{d}, \mathrm{J} 5, \mathrm{Me}$), 1.30 ($19 \mathrm{H}, \mathrm{br} \mathrm{s}, 4,5,6,7,8,9,10,11$, 13, 14-H), 1.90 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 3,1-\mathrm{H}$), $2.15(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.25(1 \mathrm{H}$, $\mathrm{m}, 12-\mathrm{H}$) and 9.10 ($3 \mathrm{H}, \mathrm{m}$, aromatic).

14-M ethylpentadec-1-yn-12-ol 28

(12S)-I somer. In a manner similar to that described for the preparation of ($12 \mathrm{~S}, 13 \mathrm{~S}$)-6, compound $30(6.00 \mathrm{~g}, 13.9 \mathrm{mmol})$ was converted into the alcohol (12 S)-28(3.09 g, 93\%), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{26} 1.4570$ (Found: C, 80.31; H, 12.55. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}$ requires C, 80.61; H, 12.68\%); $[a]_{\mathrm{D}}^{26}+6.34$ (c 1.10 in M COH). The IR and ${ }^{1} \mathrm{H} N M R$ spectra of (12S)-28 were identical with those of (12R) -28.

E nantiomeric purity of the alcohol 28

The alcohol (12R)-28 was converted into the corresponding 3,5dinitrobenzoate (12R)-30 in the conventional manner. This enantiomer and the antipode, (12S)-30 which was yielded by M itsunobu inversion, were analysed by HPLC to determine their enantiomeric purities.

HPLC analysis [column, Chiralcel OD-H ® (4.6 i.d. $\times 250$ mm); solvent, hexane-PriOH ($100: 1$); flow, $0.3 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; detect, 254 nm].
(i) (12R)-30; $\mathrm{R}_{\mathrm{t}} / \mathrm{min} 36.2$ [$>99.5 \%$, (12R) -30$], \sim 40[<0.5 \%$, (12S)-30]. The enantiomeric purity was determined to be $>99 \%$ ee. (ii) (12S)-30; $\mathrm{Rt}_{\mathrm{t}} / \mathrm{min}^{-1} 36.7[<1 \%,(12 S, 13 S)-8], 40.4$ [$>99 \%,(12 \mathrm{R}, 13 \mathrm{~S})-8]$. The enantiomeric purity was determined to be $>98 \%$ ee.

12-tert-B utyldimethylsilyloxy-14-methylpentadec-1-yne 29

(12R)-I somer. In a manner similar to that described for the preparation of (12R,13S)-7, compound (12R)-28 (5.12 g, 21.5 $\mathrm{mmol})$ was converted into the TBS ether (12R)-29 (7.08 g,

93\%), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{25} 1.4484$ (Found: C, 75.09; H, 12.37. $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}$ Si requires $\mathrm{C}, 74.92 ; \mathrm{H}, 12.58 \%$); $[a]_{\mathrm{D}}^{26}-6.80$ (c 1.05 , in hexane); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3315 \mathrm{~m}(\mathrm{CH} \equiv \mathrm{C}$) and 1255 m (SiM e); $\delta_{\mathrm{H}}\left(60 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 0.01(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.88$ ($6 \mathrm{H}, \mathrm{d}, \mathrm{J} 5, \mathrm{C}-\mathrm{Me}$), 1.25 ($19 \mathrm{H}, \mathrm{br} \mathrm{s}, 4,5,6,7,8,9,10,11,13$, 14-H), 1.70-2.40 ($3 \mathrm{H}, \mathrm{m}, 1,3-\mathrm{H}$) and 3.65 ($1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}$).
(12S)-Isomer. In a manner similar to that described for the preparation of (12R,13S)-7, compound (12S)-28 (3.03 g, 12.7 $\mathrm{mmol})$ was converted into the TBS ether (12 S)-29 ($4.30 \mathrm{~g}, 96 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{24} 1.4494$ (Found: C, 74.79; H, 12.65. $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}$ Si requires $\mathrm{C}, 74.92 ; \mathrm{H}, 12.58 \%$); $[a]_{D}^{26}+6.46$ (c 1.15 , in hexane). The IR and ${ }^{1} \mathrm{H}$ N M R spectra of (12S)-29 were identical with those of (12R)-29.

(R)-12-A cetoxy-14-methylpentadec-1-yne 31

In the conventional manner, (12 R)-28 ($36 \mathrm{mg}, 0.15 \mathrm{mmol}$) was converted into the corresponding acetate ($40 \mathrm{mg}, 94 \%$); $\delta_{\mathbf{H}}(270$ M Hz; CDCl $) 0.89$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6,14-\mathrm{M} \mathrm{e}$ or $15-\mathrm{H}$), $0.90(3 \mathrm{H}, \mathrm{d}$, J 6.3, 14-M e or 15-H), 1.20-1.70 ($19 \mathrm{H}, \mathrm{m}, 4,5,6,7,8,9,10,11$, $13,14-\mathrm{H}$), 1.78 and 1.94 (total 1 H , each t, J 2.6, 1-H), 2.03 (3 $\mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.18(2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 2.6$ and $6.9,3-\mathrm{H})$ and $4.96(1 \mathrm{H}, \mathrm{m}$, $12-\mathrm{H}$); $\delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 18.40, 21.31, 22.23, 23.20, 24.67, $25.25,28.48,28.73,29.07,29.42,29.47,29.52,34.79,43.38$, $68.07,72.76,84.80$ and 170.92.

11-A cetoxy-13-methylpentadec-1-ene 33

In the conventional manner, 3-methylpentanal 32 ($0.40 \mathrm{~g}, 4.0$ mmol) was treated with dec-9-enylmagnesium bromide to give 13-methylpentadec-1-en-11-ol, which was converted into the corresponding acetate 33 ($0.70 \mathrm{~g}, 62 \%$), a diastereoisomeric mixture; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}^{2} \mathrm{CDCl}_{3}\right) 0.82-0.90(6 \mathrm{H}, \mathrm{m}, 13-\mathrm{Me}, 14-\mathrm{Me}$), 1.05-1.70 (19 H , m, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14-H), 2.00-2.15 $(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.030$ and 2.033 (total 3 H , each s, A c), 4.90-5.05 ($3 \mathrm{H}, \mathrm{m}, 1,11-\mathrm{H}$) and 5.81 ($1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 16.8,10.2,6.6,2-\mathrm{H}$); $\delta_{\mathrm{c}}(67.8 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3$) 11.04, 11.22, 18.92, 19.48, 21.24, 21.30, 23.60, 25.16, 25.27, 28.88, 28.99, 29.06, 29.36, 29.44, 29.49, 29.98, 30.82, 31.04, 33.77, 34.41, 35.02, 38.23, 41.04, 41.26, $72.47,72.83,114.07,139.16,170.82$ and 170.87 .

tert-B utyl (4S)-4-[(1'R)-13'-tert-butyldimethylsilyloxy-1' hydroxy-15'-methylhexadec-2'-ynylf2,2-dimethyl oxazolidine-3-carboxylate 34

($\mathbf{1 3} \mathbf{\prime} \mathbf{R}$)-I somer. In a manner similar to that described for the preparation of ($13^{\prime} \mathrm{R}, 14^{\prime} \mathrm{S}$)-9, compound (12R)-29 ($7.06 \mathrm{~g}, 20.0$ mmol) was converted into the title compound ($13^{\prime} \mathrm{R}$)-34 (8.91 g , 80% based on consumed $29 ; 0.3 \mathrm{~g}, 5 \%$ of 29 recovered), a colourless oil, $\mathrm{n}_{D}^{25} 1.4611$ (Found: C, 68.27; H, 10.55; N, 2.64. $\mathrm{C}_{33} \mathrm{H}_{63} \mathrm{NO}_{5} \mathrm{Si}$ requires $\mathrm{C}, 68.11 ; \mathrm{H}, 10.91 ; \mathrm{N}, 2.41 \%$); $[a]_{0}^{26}$ -34.1 (c 1.04 in CHCl_{3}); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3450 \mathrm{~m}(\mathrm{OH}), 1705 \mathrm{~s}$ ($\mathrm{C}=0$), 1390 s and 1255 m (SiM e); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 0.04 (6 H, s, SiM e), 0.86-0.89 ($6 \mathrm{H}, \mathrm{m}, 16^{\prime}-\mathrm{H}, 15^{\prime}-\mathrm{M} \mathrm{e}$), $0.88(9 \mathrm{H}$, $\mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), 1.15-1.70 ($19 \mathrm{H}, \mathrm{m}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 10^{\prime}, 11^{\prime}, 12^{\prime}$, $\left.14^{\prime}, 15^{\prime}-\mathrm{H}\right), 1.50\left(9 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Bu} \mathrm{t}^{\mathrm{t}}\right), 1.59(6 \mathrm{H}, \mathrm{br}$ s, 2-M e), 2.19 $\left(2 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J} 5.3,4^{\prime}-\mathrm{H}\right), 3.68\left(1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{H}\right), 3.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 4.10(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right)$ and $4.76(1 \mathrm{H}, \mathrm{m}$, 4-H).
($\mathbf{1 3} \mathbf{\prime} \mathbf{S}$)-I somer. In a manner similar to that described for the preparation of ($13^{\prime} \mathrm{R}, 14^{\prime} \mathrm{S}$)-9, compound (12 S)-29 (4.25 g , 12.05 mmol) was converted into the title compound (13 'S)-34 $(4.73 \mathrm{~g}, 95 \%$ based on consumed $29 ; 1.22 \mathrm{~g}, 29 \%$ of 29 recovered), a colourless oil, $n_{D}^{26} 1.4609$ (Found: C, 67.56; H, 10.50; N, 2.57. $\mathrm{C}_{33} \mathrm{H}_{63} \mathrm{~N} \mathrm{O}_{5} \mathrm{Si}$ requires $\mathrm{C}, 68.11 ; \mathrm{H}, 10.91 ; \mathrm{N}$, 2.41\%); $[a]_{0}^{26}-22.3$ (c 1.07 in CHCl_{3}); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3445 \mathrm{~m}$ $(\mathrm{OH}), 1705 \mathrm{~s}(\mathrm{C}=0)$, 1390s and 1255 m (SiM e); $\delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) $0.04(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.87\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 5,16^{\prime}-\mathrm{H}, 15^{\prime}-\mathrm{Me}\right.$), 0.88 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), 1.15-1.70 ($19 \mathrm{H}, \mathrm{m}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 10^{\prime}, 11^{\prime}$, $\left.12^{\prime}, 14^{\prime}, 15^{\prime}-\mathrm{H}\right), 1.50\left(9 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.59(6 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{M} \mathrm{e})$, $2.19\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.68\left(1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{H}\right), 3.90-4.15(3 \mathrm{H}, \mathrm{m}, 5-$ $\mathrm{H}, \mathrm{OH})$ and $4.60\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}, 4-\mathrm{H}\right)$.

(2S,3R ,4E)-2-A mino-15-tert-butyldimethylsilyloxy-17-methyl-octadec-4-ene-1,3-diol 35

(15R)-Isomer. In a manner similar to that described for the preparation of ($15 \mathrm{R}, 16 \mathrm{~S}$)-10, compound ($13^{\prime} \mathrm{R}$)-34 ($8.69 \mathrm{~g}, 14.9$ mmol) was converted into the crude amine (15R)-35 (8.30 g , quant.), $v_{\max }($ film $) / \mathrm{cm}^{-1} 3365 \mathrm{~m}(\mathrm{OH}$ and NH$)$ and 1255 m (SiM e). This compound was used directly for the next step without purification.
(15S)-Isomer. In a manner similar to that described for the preparation of ($15 \mathrm{R}, 16 \mathrm{~S}$)-10, compound (13 S))- 34 ($5.16 \mathrm{~g}, 8.87$ mmol) was converted into the crude amine (15S)-35 (3.85 g , $98 \%), v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3360 \mathrm{~m}$ and 3300 m (OH and NH) and 1255 m (SiM e). This compound was used directly for the next step without purification.

(2S,3R ,4E)-2-A mino-1,3,15-tris-tert-butyldimethylsilylox y-17-methyloctadec-4-ene 36

(15R)-Isomer. In a manner similar to that described for the preparation of ($15 \mathrm{R}, 16 \mathrm{~S}$)-11, compound (15R)-35 (8.30 g) was converted into the compound (15R)-36 ($7.02 \mathrm{~g}, 70 \%$ based on 34), an oil, $n_{D}^{25} 1.4572$ (Found: C, 65.80; H, 11.84; N, 2.13. $\mathrm{C}_{37} \mathrm{H}_{81} \mathrm{NO}_{3} \mathrm{Si}_{3}$ requires $\left.\mathrm{C}, 66.10 ; \mathrm{H}, 12.14 ; \mathrm{N}, 2.08 \%\right) ;[a]_{D}^{27}$ -1.43 (c 1.02 in M eOH); $v_{\text {max }}$ (film)/cm ${ }^{-1} \sim 3300 \mathrm{w}(\mathrm{N} \mathrm{H}$), 1255 m (SiMe) and $835 \mathrm{~s} ; \delta_{\mathrm{H}}\left(60 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.00(18 \mathrm{H}, \mathrm{brs}, \mathrm{SiMe}$), 0.87 ($33 \mathrm{H}, \mathrm{brs}, \mathrm{CM}$ e), 1.25 ($21 \mathrm{H}, \mathrm{br}$ s, $7,8,9,10,11,12,13,14$, 16, 17-H, N H 2), $2.00(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.75$ ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 3.55 $(3 \mathrm{H}, \mathrm{m}, 1,15-\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $5.50(2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H})$.
(15S)-Isomer. In a manner similar to that described for the preparation of ($15 \mathrm{R}, 16 \mathrm{~S}$)-11, compound (15 S)-35 (3.85 g) was converted into the compound (15 S)-36 ($4.12 \mathrm{~g}, 69 \%$ based on 34), an oil, $\mathrm{n}_{\mathrm{D}}^{26} 1.4562$ (Found: C, 66.03; H, 12.16; N, 1.73. $\mathrm{C}_{37} \mathrm{H}_{81} \mathrm{NO}_{3} \mathrm{Si}_{3}$ requires $\mathrm{C}, 66.10 ; \mathrm{H}, 12.14 ; \mathrm{N}, 2.08 \%$); $[a]_{0}^{26}$ +2.91 (c 1.04 in M eOH); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} \sim 3300 \mathrm{w}(\mathrm{NH}), 1255 \mathrm{~m}$ (SiMe) and $835 \mathrm{~s} ; \delta_{\mathrm{H}}\left(60 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.00(18 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{SiMe})$, 0.87 ($33 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CM}$ e), 1.25 (21 H, br s, $7,8,9,10,11,12,14,16$, $17-\mathrm{H}, \mathrm{NH}_{2}$), $2.00(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.55(3 \mathrm{H}$, $\mathrm{m}, 1,15-\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $5.50(2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H})$.

(2S,3R, 4E)-1,3,15-T ris-tert-butyldimethyIsilylox y-17-methyl-2-p-tolylsulfonylaminooctadec-4-ene 37

(15R)-Isomer. In a manner similar to that described for the preparation of ($15 \mathrm{R}, 16 \mathrm{~S}$)-12, compound (15R)-36 (7.00 g, 10.4 mmol) was converted into the compound (15 R) -37 ($8.61 \mathrm{~g}, 90 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{26} 1.4788$ (Found: C, 63.80; H, 10.85; N, 1.69. $\mathrm{C}_{44} \mathrm{H}_{87} \mathrm{NO}_{5} \mathrm{SSi}_{3}$ requires $\mathrm{C}, 63.94 ; \mathrm{H}, 10.61 ; \mathrm{N}, 1.70 \%$); $[a]_{D}^{26}$ -4.78 (c 1.02 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3290 \mathrm{~m}(\mathrm{NH}), 1600 \mathrm{w}$ (aromatic), $1335 \mathrm{~m}\left(\mathrm{SO}_{2}\right), 1255 \mathrm{~m}(\mathrm{SiM} \mathrm{e}), 1165 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$ and $835 \mathrm{~s} ;$ $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)-0.06,-0.05,-0.02,0.00$ and 0.04 (total 18 H , each s, SiM e), $0.79\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.87(9$ $\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), 0.78-0.92 ($6 \mathrm{H}, \mathrm{m}, 17-\mathrm{Me}, 18-\mathrm{H}$), 1.15-1.50 (18 H , m, 7, 8, 9, 10, 11, 12, 13, 14, 16-H), 1.65 (1 H , m, 17-H), 1.94 (2 H, m, 6-H), 2.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 3.11 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 3.45 (1 H , dd, J 10.2 and $5.9,1-\mathrm{H}$ a), $3.68(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.80(1 \mathrm{H}, \mathrm{dd}$, J 10.2 and $4.0,1-\mathrm{Hb}), 4.23(1 \mathrm{H}, \mathrm{brt}, \mathrm{J} 6.3,3-\mathrm{H}), 4.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6.9, NH), $5.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5$ and $7.3,4-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{dt}$, J 15.5 and $6.6,5-\mathrm{H}), 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6, \mathrm{~m}-\mathrm{Ar})$ and $7.73(2 \mathrm{H}, \mathrm{d}$, J 8.6, o-A r).
(15S)-Isomer. In a manner similar to that described for the preparation of ($15 \mathrm{R}, 16 \mathrm{~S}$)-12, compound (15S)-36 (4.08 g, 6.07 mmol) was converted into the compound (15 S)-37 ($4.29 \mathrm{~g}, 86 \%$), a colourless oil, $n_{D}^{26} 1.4783$ (Found: C, 63.67; H, 10.44; N, 1.74. $\mathrm{C}_{44} \mathrm{H}_{87} \mathrm{NO}_{5} \mathrm{SSi}_{3}$ requires C, 63.94; H, 10.61; N, 1.70\%); $[a]_{D}^{22}$ +1.37 (c 1.05 in CHCl_{3}); $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 3290 \mathrm{~m}(\mathrm{NH}), 1600 \mathrm{w}$ (aromatic), $1335 \mathrm{~m}\left(\mathrm{SO}_{2}\right), 1255 \mathrm{~m}(\mathrm{SiM} \mathrm{e}), 1165 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$ and 835 s ; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right)-0.06,-0.05,-0.02,0.00$ and 0.04 (total 18 H , each s, SiM e), $0.79\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.87(9$ $\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), 0.78-0.92 ($6 \mathrm{H}, \mathrm{m}, 17-\mathrm{Me}, 18-\mathrm{H}$), 1.15-1.50 (18 H , $\mathrm{m}, 7,8,9,10,11,12,13,14,16-\mathrm{H}$) , 1.65 ($1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}$), 1.94 (2 H, m, 6-H), 2.41 (3H, s, ArMe), 3.11 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 3.45 (1 H , dd, J 10.2 and $5.9,1-\mathrm{Ha}$), $3.68(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}$), $3.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$
10.2 and $4.0,1-\mathrm{Hb}$), $4.23(1 \mathrm{H}, \mathrm{brt}, \mathrm{J} 6.3,3-\mathrm{H}), 4.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $6.9, \mathrm{NH}), 5.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5$ and $7.3,4-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ 15.5 and $6.6,5-\mathrm{H}), 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6, \mathrm{~m}-\mathrm{Ar})$ and $7.73(2 \mathrm{H}, \mathrm{d}$, J $8.6,0-\mathrm{Ar}$).

($2 S, 3 S, 4 R, 5 S$)-1,3,15-T ris-tert-butyldimethylsilylox y-4,5-epoxy-17-methyl-2-p-tolylsulfonylaminooctadecane 38

(15R)-Isomer. In a manner similar to that described for the preparation of (15R ,16S)-13, compound (15R)-37 (7.66 g, 9.27 mmol) was converted into the unwanted α-epoxide (15R)-38' $(4.28 \mathrm{~g}, 55 \%)$ and the desired epoxide (15R)-38 ($3.06 \mathrm{~g}, 39 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{29} 1.4770$ (Found: C, 62.55; H, 10.86; N, 1.66. $\mathrm{C}_{44} \mathrm{H}_{87} \mathrm{NO}_{6} \mathrm{SSi}_{3}$ requires $\mathrm{C}, 62.73 ; \mathrm{H}, 10.41 ; \mathrm{N}, 1.66 \%$); $[a]_{D}^{27}$ -20.5 (c 1.03 in M eOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3285 \mathrm{~m}(\mathrm{NH}), 1600 \mathrm{w}$ (aromatic), $1335 \mathrm{~m}\left(\mathrm{SO}_{2}\right), 1255 \mathrm{~m}(\mathrm{SiM} \mathrm{e})$ and $1165 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right)-0.05,-0.02,0.04$ and 0.05 (total 18 H , each s, SiM e), $0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.88(9 \mathrm{H}, \mathrm{s}$, Bu^{t}), 0.82-0.90 ($6 \mathrm{H}, \mathrm{m}, 17-\mathrm{Me}, 18-\mathrm{H}$), 1.15-1.60 ($20 \mathrm{H}, \mathrm{m}, 6$, 7, 8, 9, 10, 11, 12, 13, 14, 16-H), 1.65 ($1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}$), 2.41 (3 H , s, ArMe), $2.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0$ and $2.0,4-\mathrm{H}), 2.78(1 \mathrm{H}, \mathrm{m}$, 5-H), $3.27(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5$ and $5.0,1-\mathrm{Ha}$), $3.68(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.71(1 \mathrm{H}$, dd, J 10.5 and $5.0,1-\mathrm{Hb}), 3.78$ ($1 \mathrm{H}, \mathrm{br}$ t, J 5.0, 3-H), $4.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{NH}$), $7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.3, m-Ar) and 7.76 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{o}-\mathrm{Ar}$).
(15S)-Isomer. In a manner similar to that described for the preparation of (15R ,16S)-13, compound (15S)-37 (4.28 g, 5.18 mmol) was converted into the unwanted α-epoxide (15S)-38' ($2.37 \mathrm{~g}, 54 \%$) and the desired epoxide (15 S)-38 ($1.73 \mathrm{~g}, 40 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{24} 1.4790$ (Found: C, 63.22; H, 10.86; N, 1.77. $\mathrm{C}_{44} \mathrm{H}_{87} \mathrm{NO}_{6} \mathrm{SSi}_{3}$ requires C, 62.73; H, 10.41; N, 1.66\%); [a] $]_{\mathrm{D}}^{27}$ -14.7 (c 1.10 in M eOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3290 \mathrm{~m}(\mathrm{NH}), 1600 \mathrm{w}$ (aromatic), $1335 \mathrm{~m}\left(\mathrm{SO}_{2}\right), 1255 \mathrm{~m}(\mathrm{SiMe})$ and $1165 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right)-0.05,-0.02,0.04$ and 0.05 (total 18 H , each s, SiM e), $0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.88(9 \mathrm{H}, \mathrm{s}$, Bu^{t}), 0.82-0.90 ($6 \mathrm{H}, \mathrm{m}, 17-\mathrm{Me}, 18-\mathrm{H}$), 1.15-1.60 ($20 \mathrm{H}, \mathrm{m}, 6$, $7,8,9,10,11,12,13,14,16-\mathrm{H}$), 1.65 ($1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}$), 2.41 (3 H , $\mathrm{s}, \mathrm{ArMe}), 2.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0$ and $2.0,4-\mathrm{H}), 2.78(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 3.27(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5$ and $5.0,1-\mathrm{Ha}$), $3.68(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5$ and 5.0, 1-H b), 3.78 ($1 \mathrm{H}, \mathrm{brt}, \mathrm{J} 5.0,3-\mathrm{H}$), $4.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{NH}), 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.3, m-Ar) and 7.76 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{o}-\mathrm{Ar}$).

(2S,3S,4R)-1,3,15-T ris-tert-butyldimethylsilylox y-17-methyl-2-

 p-tolylsulfonylaminooctadecan-4-ol 39(15R)-I somer. In a manner similar to that described for the preparation of (15R ,16S)-14, compound (15R)-38 ($2.55 \mathrm{~g}, 3.03$ mmol) was converted into the alcohol (15 R)-39 ($2.09 \mathrm{~g}, 82 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{25} 1.4788$ (Found: C, 62.51; H, 10.99; N, 1.66. $\mathrm{C}_{44} \mathrm{H}_{89} \mathrm{NO}_{6} \mathrm{SSi}_{3}$ requires C, 62.58; H, 10.62; N, 1.66\%); [a] $]_{\mathrm{D}}{ }^{7}$ -11.8 (c 1.00 in M eOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3545 \mathrm{~m}$ (OH), 3325 m (NH), 1600w (aromatic), 1255m (SiM e), 1090s, 835 s and 775 m ; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)-0.05,-0.02,0.04,0.09$ and 0.12 (total 18 H , each s, SiM e), $0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right.$), 0.88 ($18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), $0.82-0.95$ ($6 \mathrm{H}, \mathrm{m}, 17-\mathrm{M} \mathrm{e}, 18-\mathrm{H}$), 1.17-1.55 ($22 \mathrm{H}, \mathrm{m}, 5,6,7,8$, 9, 10, 11, 12, 13, 14, 16-H), 1.65 ($1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}$), 2.42 ($3 \mathrm{H}, \mathrm{s}$, ArM e), 2.58 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.3, \mathrm{OH}$), $3.42(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.48-3.60$ ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{Ha}, 2-\mathrm{H}$), 3.62-3.75 (2 H, m, 1-H b, 15-H), 3.81 (1 H, dd, J 4.8 and 3.0, 3-H), 4.82 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{NH}$), $7.28(2 \mathrm{H}$, d, J $8.3, \mathrm{~m}-\mathrm{Ar}$) and 7.74 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{o}-\mathrm{Ar}$).
(15S)-Isomer. In a manner similar to that described for the preparation of ($15 \mathrm{R}, 16 \mathrm{~S}$)-14, compound (15 S)-38 ($120 \mathrm{mg}, 142$ $\mu \mathrm{mol}$) was converted into the alcohol (15S)-39 ($99 \mathrm{mg}, 82 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{24} 1.4790$ (Found: C, 63.04; H, 10.62; N, 1.71. $\mathrm{C}_{44} \mathrm{H}_{89} \mathrm{NO}_{6} \mathrm{Si}_{3}$ requires C, 62.58; H, 10.62; N, 1.66\%); $[a]_{0}^{26}$ -6.69 (c 1.08 in M eOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3545 \mathrm{~m}(\mathrm{OH}), 3325 \mathrm{~m}$ (NH), 1600 w (aromatic), 1255 m (SiM e), $1090 \mathrm{~s}, 835 \mathrm{~s}$ and 775 m ; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)-0.05,-0.02,0.04,0.09$ and 0.12 (total 18 H , each s, SiM e), $0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.88\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$, $0.82-0.95$ ($6 \mathrm{H}, \mathrm{m}, 17-\mathrm{Me}$ e $18-\mathrm{H}$), 1.17-1.55 ($22 \mathrm{H}, \mathrm{m}, 5,6,7,8$, 9, 10, 11, 12, 13, 14, 16-H), 1.65 ($1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}$), $2.42(3 \mathrm{H}, \mathrm{s}$,

ArM e), 2.58 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.3, \mathrm{OH}$), $3.42(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.48-3.60$ ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{Ha}, 2-\mathrm{H}$), 3.62-3.75 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ b, 15-H), 3.81 (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 4.8$ and $3.0,3-\mathrm{H}$), $4.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{NH}), 7.28(2 \mathrm{H}$, d, J 8.3, m-Ar) and 7.74 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{o}-\mathrm{Ar}$).

($2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}$)-3-tert-B utyldimethylsilylox y-2-tert-butyldimethyl-silyloxymethyl-4-(11'-tert-butyldimethylsilyloxy-13'-methyl-tetradecyl)- N - p -tolylsulfonylazetidine 41

($11^{\prime} \mathbf{R}$)-Isomer. In a manner similar to that described for the preparation of ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-16, compound (15R)-39 (2.03 g , 2.40 mmol) was converted into the cyclized compound (11'R)41 ($1.43 \mathrm{~g}, 72 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{25} 1.4775$ (Found: C, 64.11; $\mathrm{H}, 10.47 ; \mathrm{N}, 1.63 . \mathrm{C}_{44} \mathrm{H}_{87} \mathrm{~N} \mathrm{O}_{5} \mathrm{SSi}_{3}$ requires $\mathrm{C}, 63.94 ; \mathrm{H}$, 10.61; $\mathrm{N}, 1.70 \%$); $[a]_{{ }^{8}}+34.6$ (c 1.01 in CHCl_{3}); $v_{\max }($ film $) /$ $\mathrm{cm}^{-1} 1600 \mathrm{w}$ (aromatic), $1255 \mathrm{~m}(\mathrm{SiM} \mathrm{e}), 1160 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 835 \mathrm{~s}$, 775 m and $670 \mathrm{~s} ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.01,0.02,0.03$ and 0.04 (total 18 H , each s, SiM e), $0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.87(9 \mathrm{H}$, $\left.\mathrm{s}, ~ B u^{t}\right)$, $0.88\left(9 \mathrm{H}, \mathrm{s}, ~ B u^{t}\right), 0.85-0.90\left(6 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{M} \mathrm{e}\right.$, 14'-H), 1.05-1.55 (20 H, m, 2', 3', 4', 5', 6', 7', 8', 9', 10', $\left.12^{\prime}-\mathrm{H}\right), 1.65\left(1 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{H}\right), 1.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right), 2.41(3 \mathrm{H}$, s, ArM e), $3.68\left(1 \mathrm{H}, \mathrm{m}, 11^{\prime}-\mathrm{H}\right), 3.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2$ and 3.2, 2-CHH-OTBS), 3.86 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2$ and 4.6 , 2-CHH-OTBS), 3.97 ($1 \mathrm{H}, q-$ like, J 3.6, 4-H), 4.22 ($1 \mathrm{H}, \mathrm{m}$, 2-H), 4.41 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.3$ and $3.0,3-\mathrm{H}$), 7.26 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$, $\mathrm{m}-\mathrm{Ar}$) and 7.71 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5,0-\mathrm{Ar}$).
($\mathbf{1 1} \mathbf{\prime} \mathbf{S}$)-Isomer. In a manner similar to that described for the preparation of ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-16, compound (15S)-39 (834 mg , $988 \mu \mathrm{~mol}$) was converted into the cyclized compound (11'S)-41 ($613 \mathrm{mg}, 75 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{26} 1.4790$ (Found: C, 63.45; $\mathrm{H}, 10.45 ; \mathrm{N}, 1.58 . \mathrm{C}_{44} \mathrm{H}_{87} \mathrm{NO}_{5} \mathrm{SSi}_{3}$ requires $\mathrm{C}, 63.94 ; \mathrm{H}, 10.61$; $\mathrm{N}, 1.70 \%$); $[a]_{0}^{28}+36.4$ (c 1.02 in CHCl_{3}); $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 1600 w (aromatic), $1255 \mathrm{~m}(\mathrm{SiM} \mathrm{e}), 1160 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 835 \mathrm{~s}, 775 \mathrm{~m}$ and $670 \mathrm{~s} ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 0.01,0.02,0.03$ and 0.04 (total 18 H , each s, SiMe), $0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$, 0.88 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), $0.85-0.90\left(6 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{Me}, 14^{\prime}-\mathrm{H}\right), 1.05-$ 1.55 (20 H, m, 2', $\left.3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 10^{\prime}, 12^{\prime}-\mathrm{H}\right), 1.65$ (1 $\left.\mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{H}\right), 1.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right), 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{ArM}$ e), 3.68 ($1 \mathrm{H}, \mathrm{m}, 11^{\prime}-\mathrm{H}$), 3.80 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2,3.2,2-\mathrm{CH} \mathrm{H}-\mathrm{OTBS}$), 3.86 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2,4.6,2-\mathrm{CHH}-\mathrm{OTBS}$), 3.97 (1 H , q-like, J 3.6, 4-H), $4.22(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.3,3.0$, $3-\mathrm{H}), 7.26(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{~m}-\mathrm{Ar})$ and $7.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$, $0-\mathrm{Ar}$).
(2S,3R,4S)-3-tert-B utyldimethylsilylox y-2-tert-butyldimethyl-silyloxymethyl-4-(11'-tert-butyldimethyIsilyloxy-13'-methyltetradecyl)azetidine 42
($11^{\prime} \mathbf{R}$)-I somer. In a manner similar to that described for the preparation of ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-17, compound ($11^{\prime} \mathrm{R}$)-41 (1.34 g , 1.62 mmol) was converted into the amine ($11^{\prime} \mathrm{R}$)-42 (942 mg , 87%), a colourless oil, $n_{D}^{25} 1.4580$ (Found: C, 65.70; H, 11.77; $\mathrm{N}, 2.14 . \mathrm{C}_{35} \mathrm{H}_{75} \mathrm{NSi}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 66.10 ; \mathrm{H}, 12.14 ; \mathrm{N}, 2.08 \%$); $[a]_{0}^{28}-7.84$ (c 1.02 in M EOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1255 \mathrm{~m}(\mathrm{SiMe}$), $1060 \mathrm{w}, 835 \mathrm{~s}$ and $775 \mathrm{~m} ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.02,0.04$ and 0.07 (total 18 H , each s, SiM e), 0.85-0.90 ($6 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{M} \mathrm{e}$, $\left.14^{\prime}-\mathrm{H}\right), 0.875,0.88$ and $0.91\left(27 \mathrm{H}\right.$, each $\mathrm{s}, \mathrm{Bu} \mathrm{t}^{\mathrm{t}}$), 1.15-1.50 (20 H, m, 2', $\left.3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 10^{\prime}, 12^{\prime}-\mathrm{H}\right), 1.58-1.85(4 \mathrm{H}, \mathrm{m}$, $\left.1^{\prime}, 13^{\prime}-\mathrm{H}, \mathrm{NH}\right), 3.48-3.73\left(5 \mathrm{H}, \mathrm{m}, 2-\mathrm{CH}_{2}-\mathrm{OTBS}, 2,4,11^{\prime}-\mathrm{H}\right)$ and 4.43 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.3$ and $5.3,3-\mathrm{H})$.
($\mathbf{1 1} \mathbf{\prime} \mathbf{S}$)-Isomer. In a manner similar to that described for the preparation of ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-17, compound ($11^{\prime} \mathrm{S}$)-41 (599 mg , $725 \mu \mathrm{~mol}$) was converted into the amine (11 S)-42 (435 mg , 89\%), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{25} 1.4593$ (Found: C, 65.70; H, 11.77; N, 2.14. $\mathrm{C}_{35} \mathrm{H}_{75} \mathrm{~N} \mathrm{Si}_{2} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 66.20 ; \mathrm{H}, 11.73 ; \mathrm{N}, 1.88 \%\right) ;[a]_{0}^{26}$ -2.00 (c 1.04 in M eOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1255 \mathrm{~m}$ (SiM e), 1060 w , 835 s and $775 \mathrm{~m} ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 0.02,0.04$ and 0.07 (total 18 H , each s, SiM e), 0.85-0.90 ($\left.6 \mathrm{H}, \mathrm{m}, 13^{\prime}-\mathrm{M} \mathrm{e}, 14^{\prime}-\mathrm{H}\right), 0.875$, 0.88 and $0.91\left(27 \mathrm{H}\right.$, each s, But), 1.15-1.50 ($20 \mathrm{H}, \mathrm{m}, 2^{\prime}, 3^{\prime}, 4^{\prime}$, $\left.5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 10^{\prime}, 12^{\prime}-\mathrm{H}\right), 1.58-1.85\left(4 \mathrm{H}, \mathrm{m}, 1^{\prime}, 13^{\prime}-\mathrm{H}, \mathrm{NH}\right)$, 3.48-3.73 ($\left.5 \mathrm{H}, \mathrm{m}, 2-\mathrm{CH}_{2}-\mathrm{OTBS}, 2,4,11^{\prime}-\mathrm{H}\right)$ and $4.43(1 \mathrm{H}$, dd, J 7.3 and $5.3,3-\mathrm{H}$).

(2S,3R,4S)-3-H ydroxy-2-hydroxymethyl-4-(11'-hydroxy-13'methyltetradecyl)azetidine 2'

(11'R)-Isomer, [(15R)-penaresidin B]. In a manner similar to that described for the preparation of ($11^{\prime} \mathrm{S}, 12^{\prime} \mathrm{S}$)-1, compound ($11^{\prime} \mathrm{R}$)-42 ($853 \mathrm{mg}, 1.27 \mathrm{mmol}$) was converted into the penaresidin ($11^{\prime} \mathrm{S}$)-2' (A cOH salt; $494 \mathrm{mg}, 86 \%$), a slightly yellow oil, $\mathrm{n}_{\mathrm{D}}^{26} 1.4744$ [Found: (HRFAB-M S) M $+1330.3011 . \mathrm{C}_{19} \mathrm{H}_{40} \mathrm{~N} \mathrm{O}_{3}$ requires $\mathrm{m} / \mathrm{z} 330.3008$]; $[a]_{0}^{26}-13.7$ (c 0.39 in M eOH); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3331 \mathrm{~s}(\mathrm{OH}), 2926 \mathrm{~s}$ (CH), 2854s (CH), 1556m, $1467 \mathrm{~m}, 1415 \mathrm{~m}, 1048 \mathrm{~m}, 757 \mathrm{w}$ and $654 \mathrm{~m} ; \delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CD}_{3} \mathrm{OD}\right)$ 0.89 and 0.91 (total 6 H , each d, J 5.4, $14^{\prime}-\mathrm{H}, 13^{\prime}-\mathrm{Me}$), 1.18 (1 H , ddd, J 13.2, 8.8 and 4.2, 12 '- H a), 1.31 and ~ 1.48 ($19 \mathrm{H}, \mathrm{br} \mathrm{s}$ and $\mathrm{m}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 10^{\prime}, 13^{\prime}-\mathrm{H}, 12^{\prime}-\mathrm{H}$ b), 1.72$1.97\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 1.91(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.58$ ($\left.1 \mathrm{H}, \mathrm{m}, 11^{\prime}-\mathrm{H}\right), 3.81$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.7$ and $3.9,2 \mathrm{CHH}-\mathrm{OH}$), $3.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.7$ and 4.4, 2-CHH-OH), $4.08(1 \mathrm{H}, \mathrm{br}$ q, J 4.3, 2-H), $4.24(1 \mathrm{H}, \mathrm{br}$ q, J 8.0, 4-H) and $4.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.8$ and $4.9,3-\mathrm{H}) ; \delta_{\mathrm{c}}(125 \mathrm{M} \mathrm{H} \mathrm{z}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 22.43,23.85,23.93,25.65,26.15,26.78,27.71,30.40$, $30.51,30.67,30.84,39.04,47.87,59.66,65.16,66.38,69.88$ and 70.34 .
(11'S)-Isomer, [(15S)-penaresidin B]. In a manner similar to that described for the preparation of ($11^{\prime} \mathrm{S}, 12^{\prime} \mathrm{S}$)-1, compound (11 S S) $\mathbf{4 2}$ ($425 \mathrm{mg}, 632 \mu \mathrm{~mol}$) was converted into the penaresidin (11'S)-2' (A COH salt; $224 \mathrm{mg}, 91 \%$), a slightly yellow oil, $\mathrm{n}_{\mathrm{D}}^{25}$ 1.4692 [Found: (HRFAB-M S) M +1 330.2983. $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{NO}_{3}$ requires $\mathrm{m} / \mathrm{z} 330.3008$]; [$a]_{D}^{25}-6.8$ (c 0.35 in MeOH); $v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 3258 \mathrm{~s}$ (OH), 2925s (CH), 2854s (CH), 1564m, 1556m, $1467 \mathrm{~m}, 1415 \mathrm{~m}, 1367 \mathrm{w}, 1121 \mathrm{~m}, 1048 \mathrm{~m}, 839 \mathrm{w}, 720 \mathrm{w}$ and 654 m ; $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 0.89$ and 0.91 (total 6 H , each d, J 5.4 , $14^{\prime}-\mathrm{H}, 13^{\prime}-\mathrm{M} \mathrm{e}$), 1.18 (1 H , ddd, J 13.2, 8.8 and 4.2, 12^{\prime} - Ha), 1.31 and ~ 1.48 ($19 \mathrm{H}, \mathrm{br}$ s and $\mathrm{m}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 1^{\prime}$, $\left.13^{\prime}-\mathrm{H}, 12^{\prime}-\mathrm{Hb}\right), 1.72-1.97\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 1.90(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$, 3.58 ($1 \mathrm{H}, \mathrm{m}, 11^{\prime}-\mathrm{H}$), $3.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.7$ and $3.9,2-\mathrm{CHH}-$ $\mathrm{OH}), 3.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.7$ and $4.4,2-\mathrm{CHH}-\mathrm{OH}), 4.08(1 \mathrm{H}, \mathrm{br}$ q, J 4.3, 2-H), $4.23(1 \mathrm{H}, \mathrm{br}$ q, J $8.0,4-\mathrm{H})$ and $4.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 6.8 and $4.9,3-\mathrm{H}) ; \delta_{\mathrm{c}}\left(125 \mathrm{M} \mathrm{Hz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 22.43,23.34,23.94$, $25.66,26.16,26.79,27.67,30.41,30.53,30.71,30.84,39.06$, $47.88,59.60,65.22,66.35,69.93$ and 70.34 .

(2S,3R ,4S)-3-A cetoxy-2-acetoxymethyl-4-(11'-acetox y-13'-methyltetradecyl)-N-acetylazetidine 43

(11^{\prime} R)-I somer, [(15R)-penaresidin B tetraacetyl derivative]. In a manner similar to that described for the preparation of ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-18, compound (11'R)-2' (A cOH salt; $62 \mathrm{mg}, 0.19$ mmol) was converted into the tetraacetyl derivative ($11^{\prime} \mathrm{R}$)-43 ($57 \mathrm{mg}, 82 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{26} 1.4631$ (Found: C, 65.20; H, 9.44; $\mathrm{N}, 2.74 . \mathrm{C}_{27} \mathrm{H}_{47} \mathrm{NO}_{7}$ requires $\mathrm{C}, 65.16 ; \mathrm{H}, 9.52 ; \mathrm{N}, 2.81 \%$); $[a]_{\mathrm{D}}^{27}+35$ (c 0.41 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2928 \mathrm{~s}$ (CH), 2855s (CH), 1746s ($\mathrm{CO}_{2} \mathrm{R}$), 1658s, $1454 \mathrm{w}, 1415 \mathrm{~m}, 1376 \mathrm{~m}, 1240 \mathrm{~s}$, $1169 w, 1141 w, 1119 w, 1045 m, 1123 w, 953 w$ and $722 w ; \delta_{\mathrm{H}}(500$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 0.89 and 0.90 (total 6 H , each d, J $5.4,14^{\prime}-\mathrm{H}$, $13^{\prime}-\mathrm{Me}$), 1.20-1.39 ($17 \mathrm{H}, \mathrm{m}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 13^{\prime}-\mathrm{H}$), 1.45-1.63 ($4 \mathrm{H}, \mathrm{m}, 10^{\prime}, 12^{\prime}-\mathrm{H}$), 1.68-1.81 ($1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}$ a, $\left.1^{\prime}-\mathrm{H} \mathrm{a}^{*}\right), 1.89\left(6 / 5 \mathrm{H}, \mathrm{s}, \mathrm{NA} \mathrm{c}^{*}\right), 1.92(9 / 5 \mathrm{H}, \mathrm{s}, \mathrm{NAC}), \sim 2.00(3 / 5$ $\left.\mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{Hb}\right), 2.03\left(3 \mathrm{H}, \mathrm{s}, 11^{\prime}-\mathrm{OA} \mathrm{c}\right), 2.08\left(9 / 5 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}-\right.$ OAc), 2.11 ($6 / 5 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}-\mathrm{OAc}^{*}$), 2.12 ($9 / 5 \mathrm{H}, \mathrm{s}, 3-\mathrm{OAc}$), 2.13 ($6 / 5 \mathrm{H}, \mathrm{s}, 3-\mathrm{OA} \mathrm{c}^{*}$), $\sim 2.20\left(2 / 5 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H} \mathrm{b}^{*}\right), 4.29(2 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 12.2 and $\left.2.9,2-\mathrm{CHH}-\mathrm{OA} \mathrm{c}^{*}\right), 4.33\left(2 / 5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{*}\right), 4.35-4.38$ ($3 / 5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$) , $4.38(3 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2$ and $2.4,2-\mathrm{CHH}-\mathrm{OAc}$), 4.45 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 4-\mathrm{H}^{*}$), 4.59 ($2 / 5 \mathrm{H}$, dd, J 12.2 and 3.4 , 2-CHH-OA c ${ }^{*}$), 4.69 ($3 / 5 \mathrm{H}$, dd, J 12.2 and $4.4,2-\mathrm{CH}-\mathrm{OAC}$), $4.96\left(1 \mathrm{H}, \mathrm{m}, 11^{\prime}-\mathrm{H}\right), 5.14\left(2 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.8\right.$ and $\left.3.4,3-\mathrm{H}^{*}\right)$ and 5.26 ($3 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.3$ and $3.9,3-\mathrm{H}$). This compound exists as a mixture of two rotational isomers (ca. 3:2). The asterisked ${ }^{1} \mathrm{H}$ NMR signals arise from the minor isomer; $\delta_{\mathrm{c}}(125 \mathrm{MHz}$; CDCl_{3}) 20.68, 20.79, 20.95, 21.25, 22.14, 23.13, 24.60, 25.19, 25.50, 26.82, 29.01, 29.47, 34.72, 43.31, 60.96, 62.24, 63.16, $64.78,65.01,66.38,66.59,67.37,72.68,170.00,170.06,170.17$, $170.35,170.40,170.45$ and 170.87 .
(11'S)-I somer, [(15S)-penaresidin B tetraacetyI derivative]. In a
manner similar to that described for the preparation of ($11^{\prime} \mathrm{R}, 12^{\prime} \mathrm{S}$)-18, compound ($11^{\prime} \mathrm{S}$)-2' (AcOH salt; $26 \mathrm{mg}, 67$ $\mu \mathrm{mol}$) was converted into the tetraacetyl derivative ($11^{\prime} \mathrm{S}$)-43 (32 $\mathrm{mg}, 96 \%$), a colourless oil, $\mathrm{n}_{\mathrm{D}}^{25} 1.4628$ (Found: C, 65.10; H, 9.59; $\mathrm{N}, 2.83 . \mathrm{C}_{27} \mathrm{H}_{47} \mathrm{NO}_{7}$ requires $\mathrm{C}, 65.16 ; \mathrm{H}, 9.52 ; \mathrm{N}, 2.81 \%$); $[a]_{\mathrm{D}}^{25}$ +47 (c 0.42 in CHCl_{3}); $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 2928 \mathrm{~s}(\mathrm{CH}), 2855 \mathrm{~s}(\mathrm{CH})$, $1746 \mathrm{~s}\left(\mathrm{CO}_{2} \mathrm{R}\right), 1658 \mathrm{~s}, 1454 \mathrm{w}, 1415 \mathrm{~m}, 1376 \mathrm{~m}, 1240 \mathrm{~s}, 1169 \mathrm{w}$, $1141 \mathrm{w}, 1119 \mathrm{w}, 1045 \mathrm{~m}, 1123 \mathrm{w}, 953 \mathrm{w}$ and $722 \mathrm{w} ; \delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz} ;$ $\left.\mathrm{CDCl}_{3}\right) 0.89$ and 0.90 (total 6 H , each d, J $5.4,14^{\prime}-\mathrm{H}, 13^{\prime}-\mathrm{M} \mathrm{e}$), 1.20-1.39 (17 H, m, 2', 3', 4', $5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, 13^{\prime}-\mathrm{H}$), 1.45-1.63 ($4 \mathrm{H}, \mathrm{m}, 10^{\prime}, 12^{\prime}-\mathrm{H}$), 1.68-1.81 ($1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{Ha}, 1^{\prime}-\mathrm{Ha}{ }^{*}$), 1.89 ($6 / 5 \mathrm{H}, \mathrm{s}, \mathrm{NA} \mathrm{c}^{*}$), 1.92 ($9 / 5 \mathrm{H}, \mathrm{s}, \mathrm{NAc}$), $\sim 2.00\left(3 / 5 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{Hb}\right.$), 2.03 ($3 \mathrm{H}, \mathrm{s}, 11^{\prime}-\mathrm{OA}$ c), $2.08\left(9 / 5 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}-\mathrm{OAc}\right), 2.11(6 / 5 \mathrm{H}$, $\left.\mathrm{s}, 2-\mathrm{CH}_{2} \mathrm{OAC}^{*}\right), 2.12(9 / 5 \mathrm{H}, \mathrm{s}, 3-\mathrm{OAc}), 2.13\left(6 / 5 \mathrm{H}, \mathrm{s}, 3-\mathrm{OA} \mathrm{c}^{*}\right)$, $\sim 2.20\left(2 / 5 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{Hb}^{*}\right), 4.29(2 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2$ and 2.9 , 2-CHH-OA c) , $4.33\left(2 / 5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{*}\right), 4.35-4.38(3 / 5 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 4.38(3 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2$ and $2.4,2-\mathrm{CHH}-\mathrm{OAc}), 4.45(1 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{H}, 4-\mathrm{H}^{*}\right), 4.59\left(2 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2\right.$ and $\left.3.4,2-\mathrm{CH} \mathrm{H}-\mathrm{OA} \mathrm{c}^{*}\right)$, $4.69(3 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2$ and $4.4,2-\mathrm{CHH}-\mathrm{OAc}), 4.96(1 \mathrm{H}, \mathrm{m}$, $\left.11^{\prime}-\mathrm{H}\right), 5.14\left(2 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.8\right.$ and $\left.3.4,3-\mathrm{H}^{*}\right), 5.26(3 / 5 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 7.3 and $3.9,3-\mathrm{H}$). This compound exists as a mixture of two rotational isomers (ca. 3:2). The asterisked ${ }^{1} \mathrm{H} N \mathrm{NR}$ signals arise from the minor isomer; $\delta_{\mathrm{c}}\left(125 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 20.66,20.79$, 20.95, 21.25, 22.15, 23.13, 24.60, 25.19, 25.50, 26.82, 29.01 29.45, 34.72, 43.31, 60.94, 62.24, 63.16, 64.78, 65.00, 66.38, $66.59,67.37,72.66,170.00,170.06,170.15,170.35,170.40$, 170.45 and 170.86 .

Acknowledgements

We thank Professor J. K obayashi (H okkaido U niversity) for kindly supplying copies of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} N M R$ spectra of a mixture of the tetraacetyl derivatives of the natural penaresidins A and B. We also thank Dr Y. Takeuchi for his contribution in the early phase of this work. We thank Drs T Nukada (The Institute of Physical and Chemical Research)
and T. Ebata (Japan Tobacco Co.) for their advice and help in clarifying the rotational isomerism of 18 and $\mathbf{4 3}$ by NMR and computational studies. This work was financially supported by Grant-in-A id for Scientific Research (Japanese Ministry of Education, Science and Culture) and Chinese Drug Research Foundation.

R eferences

1 Part 18, A . Yajima, H. Takikawa and K . M ori, L iebigs A nn., 1996, 1083
2 J. K obayashi, J.-F. Cheng, M . Ishibashi, M. R . Wälchli, S. Yamamura and Y. Ohizumi, J. Chem. Soc., Perkin Trans. 1, 1991, 1135.
3 H. Takikawa, T. M aeda and K. M ori, Tetrahedron Lett., 1995, 36, 7689.

4 K. A. Alvi, M. Jaspers and P. Crews, Bioorg. M ed. Chem. Lett., 1994, 4, 2447
5 T. Hiraki, Y. Y amagiwa and T. K amikawa, Tetrahedron Lett., 1995, 36, 4841.
6 P. G arner, J. M . Park and E. M alecki, J. Org. C hem., 1988, 53, 4395.
7 (a) M. Goguelin and M. Sepulchre, M akromol. Chem., 1979, 180, 1215; (b) M. K. Ellis and B. T. Golding, Org. Synth., 1990, Col. Vol. VII, 356; (c) K. M ori, Tetrahedron, 1976, 32, 1101; (d) K . M ori and Y. N akazono, Tetrahedron, 1986, 42, 6459.

8 S. R . A brams, C an. J. C hem., 1984, 62, 1333
9 O. M itsunobu, Synthesis, 1981, 1.
10 (a) T. M urakami, H. M inamikawa and M . H ato, Tetrahedron L ett., 1994, 35, 745; (b) A. D ondoni, G. Fantin, M. Fogagnolo and P. Pedrini, J. Org. Chem., 1990, 55, 1439; (c) S. Sugiyama, M. H onda and T. K omori, Liebigs A nn. Chem., 1990, 1069.
11 T. K atsuki and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974.
12 H. Paulsen and K. Todt, C hem. Ber., 1967, 100, 3385.
13 Note added in proof. The absolute configuration of penaresidin A was established as $2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}, 15 \mathrm{~S}, 16 \mathrm{~S}$ and that of penaresidin B as 2S,3R,4S,15S: see J. K obayashi, M. Tsuda, J.-F. Cheng, M . Ishibashi, H. Takikawa and K. M ori, Tetrahedron Lett., 1996, 37, 6775.

Paper 6/04276G
Received 18th J une 1996
A ccepted 27th August 1996

[^0]: $\ddagger[a]_{\mathrm{o}}$ Values are quoted in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$ throughout.

